Russian Chemical Bulletin

, Volume 68, Issue 2, pp 431–437 | Cite as

Electrochemical DNA sensors on the basis of electropolymerized thionine and Azure B with addition of pillar[5]arene as an electron transfer mediator

  • D. I. Stoikov
  • A. V.Email author
  • D. N. Shurpik
  • I. I. StoikovEmail author
  • G. A. Evtyugin
Full Articles


A DNA sensor was developed on the basis of glassy carbon electrode coated with polymeric forms of thionine and Azure B. Introduction of carbon black and pillar[5]arene into the electrode composition increases the efficiency of polymerization and the oxidation peak currents of dyes due to the mediating effect of the macrocycle. The addition of DNA onto the sensor surface and into the reaction mixture differently influences the electrochemical activity of poly(Azure B) and polythionine. The control of changes in current-voltage characteristics allowed us to identify the heat denaturation of DNA and its oxidation by reactive oxygen species generated upon the reaction of hydrogen peroxide and copper(II) salt. The DNA sensors can find application in the diagnosis of DNA damage on exposure to carcinogens and in screening of cytotoxic anticancer drugs.

Key words

electropolymerization biosensor pillar[5]arene polythionine DNA damage 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. Ahmad, S. A. Hashsham, Anal. Chim. Acta, 2012, 733, 1.CrossRefGoogle Scholar
  2. 2.
    E. Hamidi-Asl, I. Palchetti, E. Hasheminejad, M. Mascini, Talanta, 2013, 115, 74.CrossRefGoogle Scholar
  3. 3.
    A. Abi, Z. Mohammadpour, X. Zuo, A. Safavi, Biosens. Bioelectron., 2018, 102, 4789.CrossRefGoogle Scholar
  4. 4.
    M. U. Ahmed, I. Saaem, P. C. Wu, A. S. Brown, Crit. Rev. Biotechnol., 2014, 34, 180.CrossRefGoogle Scholar
  5. 5.
    E. Z. Ron, Curr. Opin. Biotechnol., 2007, 18, 252.CrossRefGoogle Scholar
  6. 6.
    G. K. Mishra, A. Barfidokht, F. Tehrani, R. K. Mishra, Foods, 2018, 7, 141.CrossRefGoogle Scholar
  7. 7.
    M. A. Alonso-Lomillo, O. Dominguez-Renedo, Curr. Pharm. Anal., 2017, 13, 169.CrossRefGoogle Scholar
  8. 8.
    G. Maduraiveeran, M. Sasidharan, V. Ganesan, Biosens. Bioelectron., 2018, 103, 113.CrossRefGoogle Scholar
  9. 9.
    J. H. T. Luong, K. B. Male, J. D. Glennon, Biotechnol. Adv., 2008, 26, 492.CrossRefGoogle Scholar
  10. 10.
    S. Zhou, L. Yuan, X. Hua, L. Xu, S. Liu, Anal. Chim. Acta, 2015, 877, 19.CrossRefGoogle Scholar
  11. 11.
    M. Can, N. O. Pekmez, A. Yildiz, Polymer, 2003, 44, 2585.CrossRefGoogle Scholar
  12. 12.
    W. Chen, M. Josowicz, B. Datta, G. B. Schusterz, J. Janata, Electrochem. Solid-State Lett., 2008, 11, E11.CrossRefGoogle Scholar
  13. 13.
    Y. Hao, B. Zhou, F. Wang, J. Li, L. Deng, Y. Liu, Biosens. Bioelectron., 2014, 52, 422.CrossRefGoogle Scholar
  14. 14.
    R. Shamagsumova, A. Porfireva, V. Stepanova, Y. Osin, G. Evtugyn, T. Hianik, Sens. Actuators B, 2015, 220, 573.CrossRefGoogle Scholar
  15. 15.
    S. Pruneanu, S. A. F. Al-Said, L. Dong, T. A. Hollis, M. A. Galindo, N. G. Wright, A. Houlton, B. R. Horrocks, Adv. Funct. Mater., 2008, 18, 2444.CrossRefGoogle Scholar
  16. 16.
    Yu. Kuzin, A. Ivanov, G. Evtugyn, T. Hianik, Electroanalysis, 2016, 28, 2956.CrossRefGoogle Scholar
  17. 17.
    K. Zhang, Y. Zhang, Electroanalysis, 2010, 22, 673.CrossRefGoogle Scholar
  18. 18.
    Y. Zhang, L. Huang, Microchim. Acta, 2012, 176, 463.CrossRefGoogle Scholar
  19. 19.
    Md. M. Rahman, Y. J. Kim, J.-J. Lee, J. Electrochem. Soc., 2015, 162, B159.CrossRefGoogle Scholar
  20. 20.
    C. C. Mayorga-Martinez, A. Chamorro-García, L. Serrano, L. Rivas, D. Quesada-Gonzalez, L. Altet, O. Francino, A. Sánchez, A. Merkoçi, J. Mater. Chem. B, 2015, 3, 5166.CrossRefGoogle Scholar
  21. 21.
    T. Yang, Y. Hu, W. Li, K. Jiao, Colloids Surf. B, 2011, 83, 179.CrossRefGoogle Scholar
  22. 22.
    V. Smolko, D. Shurpik, V. Evtugyn, I. Stoikov, G. Evtugyn, Electroanalysis, 2016, 28, 139.CrossRefGoogle Scholar
  23. 23.
    D. N. Shurpik, L. S. Yakimova, L. I. Makhmutova, A. R. Makhmutova, I. Kh. Rizvanov, V. V. Plemenkov, I. I. Stoikov, Makroheterotsikly [Macroheterocycles], 2014, 7, 351 (in Russian).CrossRefGoogle Scholar
  24. 24.
    J. Bard, L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications, 2nd ed., John Wiley and Sons, Inc., 2001.Google Scholar
  25. 25.
    A. A. Karyakin, E. E. Karyakina, H.-L. Schmidt, Electroanalysis, 1999, 11, 149.CrossRefGoogle Scholar
  26. 26.
    N. C. D. Nath, S. Sarker, Md. M. Rahman, H. J. Lee, Y. J. Kim, J.-J. Lee, Chem. Phys. Lett., 2013, 559, 56.CrossRefGoogle Scholar
  27. 27.
    C. Chen, Y. Gao, J. Macromol. Sci. A, 2007, 44, 1089.CrossRefGoogle Scholar
  28. 28.
    T. Ogoshi, Y. Hasegawa, A. Takamichi, Y. Ishimori, S. Inagi, T. Yamagishi, Macromolecules, 2011, 44, 7639.CrossRefGoogle Scholar
  29. 29.
    R. Stoewe, W. A. Prutz, Free Radical Biol. Med., 1987, 3Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  1. 1.Alexander Butlerov Institute of ChemistryKazan Federal UniversityKazanRussian Federation

Personalised recommendations