Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 416–423 | Cite as

Synthesis of 4-(2-chloroethoxy)phenyl glycosides and their modification

  • N. N. Kondakov
  • M. V. Panova
  • P. I. Abronina
  • A. I. Zinin
  • A. M. Shpirt
  • L. O. KononovEmail author
Full Articles
  • 8 Downloads

Abstract

4-(2-Chloroethoxy)phenyl (CEP) aglycon belongs to the class of Janus aglycons and has already been used as a pre-spacer in the synthesis of neoglycoconjugates and as a temporary protective group in the synthesis of oligosaccharides. In the present work, a set of glycosides of various monosaccharides containing CEP aglycon was synthesized. The possibility of modification of CEP aglycon was demonstrated using the corresponding lactoside as an example.

Key words

carbohydrates Janus aglycon CEP aglycon Staudinger reaction [2+3] cycloaddition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Essentials of glycobiology, Eds A. Varki, R. D. Cummings, J. D. Esko, P. Stanley, G. W. Hart, M. Aebi, A. G. Darvill, T. Kinoshita, N. H. Packer, J. H. Prestegard, R. L. Schnaar, P. H. Seeberger, 3rd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 2017; Available from: https://www.ncbi.nlm.nih.gov/books/NBK310274.Google Scholar
  2. 2.
    G. Magnusson, A. Y. Chernyak, J. Kihlberg, L. O. Kononov, in Neoglycoconjugates: preparation and application, Eds Y. C. Lee, R. T. Lee, Academic Press Inc., San Diego, California, 1994, pp. 53–143.Google Scholar
  3. 3.
    D. Solís, N. V. Bovin, A. P. Davis, J. Jiménez-Barbero, A. Romero, R. Roy, K. Smetana, Jr., H. J. Gabius, Biochim. Biophys. Acta, 2015, 1850, 186–235; DOI: 10.1016/j.bbagen. 2014.03.016.CrossRefGoogle Scholar
  4. 4.
    A. T. M. e Silva, A. L. C. Maia, J. de Oliveira Silva, A. L. B. de Barros, D. C. F. Soares, M. T. Q. de Magalhães, R. José Alves, G. A. Ramaldes, Carbohydr. Res., 2018, 465, 52–57; DOI: 10.1016/j.carres.2018.06.008.CrossRefGoogle Scholar
  5. 5.
    R. O´Flaherty, T. Velasco-Torrijos, Synlett, 2018, 29, 904–907; DOI: 10.1055/s-0036-1591902.CrossRefGoogle Scholar
  6. 6.
    A. Y. Chernyak, G. V. M. Sharma, L. O. Kononov, P. R. Krishna, A. B. Levinsky, N. K. Kochetkov, A. V. Rama Rao, Carbohydr. Res., 1992, 223, 303–309; DOI: 10.1016/0008-6215(92)80029-Z.CrossRefGoogle Scholar
  7. 7.
    N. N. Kondakov, T. M. Mel´nikova, T. V. Chekryzhova, M. V. Mel´nikova, A. I. Zinin, V. I. Torgov, A. O. Chizhov, L. O. Kononov, Russ. Chem. Bull., 2015, 64, 1142–1148; DOI: 10.1007/s11172-015-0991-6.CrossRefGoogle Scholar
  8. 8.
    F. Ding, L. Ji, R. William, H. Chai, X.-W. Liu, Beilstein J. Org. Chem., 2014, 10, 1325–1332; DOI: 10.3762/bjoc.10.134.CrossRefGoogle Scholar
  9. 9.
    A. Petrelli, E. Samain, S. Pradeau, S. Halila, S. Fort, ChemBio-Chem, 2017, 18, 206–212; DOI: 10.1002/cbic.201600509.CrossRefGoogle Scholar
  10. 10.
    M. Wilstermann, L. O. Kononov, U. Nilsson, A. K. Ray, G. Magnusson, J. Am. Chem. Soc., 1995, 117, 4742–4754; DOI: 10.1021/ja00122a002.CrossRefGoogle Scholar
  11. 11.
    R. Šardzík, G. T. Noble, M. J. Weissenborn, A. Martin, S. J. Webb, S. L. Flitsch, Beilstein J. Org. Chem., 2010, 6, 699–703; DOI: 10.3762/bjoc.6.81.CrossRefGoogle Scholar
  12. 12.
    J. J. Reina, A. Rioboo, J. Montenegro, Synthesis, 2018, 50, 831–845; DOI: 10.1055/s-0036-1591082.CrossRefGoogle Scholar
  13. 13.
    A. V. Kornilov, A. A. Sherman, L. O. Kononov, A. S. Shashkov, N. E. Nifant´ev, Carbohydr. Res., 2000, 329, 717–730; DOI: 10.1016/S0008-6215(00)00258-5.CrossRefGoogle Scholar
  14. 14.
    L. O. Kononov, A. V. Kornilov, A. A. Sherman, E. V. Zyryanov, G. V. Zatonsky, A. S. Shashkov, N. E. Nifant´ev, Russ. J. Bioorg. Chem., 1998, 24, 537–550.Google Scholar
  15. 15.
    A. A. Sherman, L. O. Kononov, A. S. Shashkov, G. V. Zatonsky, N. E. Nifant´ev, Mendeleev Commun., 1998, 8, 9–12.CrossRefGoogle Scholar
  16. 16.
    L. O. Kononov, P. E. Cheshev, N. E. Nifant´ev, Russ. Chem. Bull., 2000, 49, 1305–1309; DOI: 10.1007/BF02495780.CrossRefGoogle Scholar
  17. 17.
    O. N. Yudina, A. A. Sherman, N. E. Nifantiev, Carbohydr. Res., 2001, 332, 363–371; DOI: 10.1016/S0008-6215(01)00097-0.CrossRefGoogle Scholar
  18. 18.
    I. M. Ryzhov, E. Y. Korchagina, A. B. Tuzikov, I. S. Popova, T. V. Tyrtysh, G. V. Pazynina, S. M. Henry, N. V. Bovin, Carbohydr. Res., 2016, 435, 83–96; DOI: 10.1016/j.carres.2016.09.016.CrossRefGoogle Scholar
  19. 19.
    I. M. Ryzhov, E. Y. Korchagina, I. S. Popova, T. V. Tyrtysh, A. S. Paramonov, N. V. Bovin, Carbohydr. Res., 2016, 430, 59–71; DOI: 10.1016/j.carres.2016.04.029.CrossRefGoogle Scholar
  20. 20.
    E. Y. Korchagina, I. M. Ryzhov, K. A. Byrgazov, I. S. Popova, S. N. Pokrovsky, N. V. Bovin, Mendeleev Commun., 2009, 19, 152–154; DOI: 10.1016/j.mencom.2009.05.013.CrossRefGoogle Scholar
  21. 21.
    I. M. Ryzhov, E. Y. Korchagina, I. S. Popova, N. V. Bovin, Carbohydr. Res., 2012, 351, 17–25; DOI: 10.1016/j.carres.2011.12.013.CrossRefGoogle Scholar
  22. 22.
    E. V. Shipova, N. V. Bovin, Mendeleev Commun., 2000, 10, 63–64; DOI: 10.1070/MC2000v010n02ABEH001222.CrossRefGoogle Scholar
  23. 23.
    T. Buskas, E. Söderberg, P. Konradsson, B. Fraser-Reid, J. Org. Chem., 2000, 65, 958–963; DOI: 10.1021/jo9909554.CrossRefGoogle Scholar
  24. 24.
    B. Fraser-Reid, U. E. Udodong, Z. Wu, H. Ottosson, J. R. Merritt, C. S. Rao, C. Roberts, R. Madsen, Synlett, 1992, 1992, 927–942; DOI: 10.1055/s-1992-21543.CrossRefGoogle Scholar
  25. 25.
    K. Jansson, S. Ahlfors, T. Frejd, J. Kihlberg, G. Magnusson, J. Dahmén, G. Noori, K. Stenvall, J. Org. Chem., 1988, 53, 5629–5647; DOI: 10.1021/jo00259a006.CrossRefGoogle Scholar
  26. 26.
    D. Weigelt, G. Magnusson, Tetrahedron Lett., 1998, 39, 2839–2842; DOI: 10.1016/S0040-4039(98)00312-8.CrossRefGoogle Scholar
  27. 27.
    A. Wållberg, D. Weigelt, N. Falk, G. Magnusson, Tetrahedron Lett., 1997, 38, 4285–4286; DOI: 10.1016/S0040-4039(97)00880-0.CrossRefGoogle Scholar
  28. 28.
    P. I. Abronina, K. G. Fedina, N. M. Podvalnyy, A. I. Zinin, A. O. Chizhov, N. N. Kondakov, V. I. Torgov, L. O. Kononov, Carbohydr. Res., 2014, 396, 25–36; DOI: 10.1016/j.carres.2014.05.017.CrossRefGoogle Scholar
  29. 29.
    N. N. Kondakov, T. M. Mel´nikova, A. I. Zinin, V. I. Torgov, A. O. Chizhov, E. A. Gordeeva, N. V. Bovin, L. O. Kononov, Russ. Chem. Bull., 2014, 63, 501–506; DOI: 10.1007/s11172-014-0460-7.CrossRefGoogle Scholar
  30. 30.
    N. M. Podvalnyy, P. I. Abronina, E. L. Zdorovenko, A. O. Chizhov, A. I. Zinin, V. I. Torgov, L. O. Kononov, Russ. Chem. Bull., 2014, 63, 497–500; DOI: 10.1007/s11172-014-0459-0.CrossRefGoogle Scholar
  31. 31.
    P. I. Abronina, A. I. Zinin, D. A. Romashin, N. N. Malysheva, A. O. Chizhov, L. O. Kononov, Synlett, 2015, 26, 2267–2271; DOI: 10.1055/s-0035-1560172.CrossRefGoogle Scholar
  32. 32.
    N. M. Podvalnyy, A. O. Chizhov, A. I. Zinin, L. O. Kononov, Carbohydr. Res., 2016, 431, 25–32; DOI: 10.1016/j.carres.2016.05.009.CrossRefGoogle Scholar
  33. 33.
    M. V. Panova, N. M. Podvalnyy, E. L. Okun, P. I. Abronina, A. O. Chizhov, L. O. Kononov, Carbohydr. Res., 2018, 456, 35–44; DOI: 10.1016/j.carres.2017.11.002.CrossRefGoogle Scholar
  34. 34.
    L. O. Kononov, K. G. Fedina, A. V. Orlova, N. N. Kondakov, P. I. Abronina, N. M. Podvalnyy, A. O. Chizhov, Carbohydr. Res., 2017, 437, 28–35; DOI: 10.1016/j.carres.2016.11.009.CrossRefGoogle Scholar
  35. 35.
    P. I. Abronina, A. I. Zinin, D. A. Romashin, V. V. Tereshina, A. O. Chizhov, L. O. Kononov, Carbohydr. Res., 2018, 464, 28–43; DOI: 10.1016/j.carres.2018.05.005.CrossRefGoogle Scholar
  36. 36.
    E. V. Stepanova, N. M. Podvalnyy, P. I. Abronina, L. O. Ko nonov, Synlett, 2018, 29, 2043–2045; DOI: 10.1055/s-0037-1610648.CrossRefGoogle Scholar
  37. 37.
    P. I. Abronina, A. I. Zinin, N. N. Malysheva, E. V. Stepanova, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Synlett, 2017, 28, 1608–1613; DOI: 10.1055/s-0036-1589028.CrossRefGoogle Scholar
  38. 38.
    E. V. Stepanova, P. I. Abronina, A. I. Zinin, A. O. Chizhov, L. O. Kononov, Carbohydr. Res., 2019, 471, 95–104; DOI: 10.1016/j.carres.2018.11.013.CrossRefGoogle Scholar
  39. 39.
    A. I. Zinin, E. V. Stepanova, U. Jost, N. N. Kondakov, A. M. Shpirt, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Russ. Chem. Bull., 2017, 66, 304–312; DOI: 10.1007/s11172-017-1732-9.CrossRefGoogle Scholar
  40. 40.
    V. V. Rostovtsev, L. G. Green, V. V. Fokin, K. B. Sharpless, Angew. Chem., Int. Ed., 2002, 41, 2596–2599; DOI: 10.1002/1521-3773(20020715)41:14<2596::AID-ANIE2596>3.0.CO;2-4.CrossRefGoogle Scholar
  41. 41.
    V. K. Tiwari, B. B. Mishra, K. B. Mishra, N. Mishra, A. S. Singh, X. Chen, Chem. Rev., 2016, 116, 3086–3240; DOI: 10.1021/acs.chemrev.5b00408.CrossRefGoogle Scholar
  42. 42.
    M. Galibert, P. Dumy, D. Boturyn, Angew. Chem. Int. Ed., 2009, 48, 2576–2579; DOI: 10.1002/anie.200806223.CrossRefGoogle Scholar
  43. 43.
    A. Schierholt, H. A. Shaikh, J. Schmidt-Lassen, T. K. Lindhorst, Eur. J. Org. Chem., 2009, 2009, 3783–3789; DOI: 10.1002/ejoc.200900437.CrossRefGoogle Scholar
  44. 44.
    M. Kunishima, C. Kawachi, K. Hioki, K. Terao, S. Tani, Tetrahedron, 2001, 57, 1551–1558; DOI: 10.1016/S0040-4020(00)01137-6.CrossRefGoogle Scholar
  45. 45.
    M. Kunishima, C. Kawachi, J. Monta, K. Terao, F. Iwasaki, S. Tani, Tetrahedron, 1999, 55, 13159–13170; DOI: 10.1016/S0040-4020(99)00809-1.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • N. N. Kondakov
    • 1
  • M. V. Panova
    • 1
  • P. I. Abronina
    • 1
  • A. I. Zinin
    • 1
  • A. M. Shpirt
    • 1
  • L. O. Kononov
    • 1
    Email author
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations