Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 411–415 | Cite as

Synthesis of N-glycyl-β-glycopyranosylamines, derivatives of main human secreted oligosaccharide core structures

  • L. M. LikhosherstovEmail author
  • O. S. Novikova
  • N. G. Kolotyrkina
  • V. E. Piskarev
Full Articles
  • 7 Downloads

Abstract

β-Glycopyranosylamines were synthesized by the reaction of ammonium carbamate with di-, tetra-, and hexasaccharides, corresponding to the human milk and urine oligosaccharide core structures, in aqueous methanolic solution in the presence of NH3. The N-acylation of these β-glycopyranosylamines with N-Boc-glycine N-hydroxysuccinimide ester followed by removal of the Boc group afforded N-glycyl-β-glycopyranosylamines of the corresponding oligosaccharides in yields of up to 60%.

Key words

oligosaccharides human milk human urine β-glycopyranosylamines N-acylation N-glycyl-β-glycopyranosylamines 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Pectin: Chemical Properties, Uses and Health Benefits (Food Science and Technology), Ed. B. Ph. L. Bush, Nova Science Publishers, New York, 2014, 268 pp.Google Scholar
  2. 2.
    G. Pitarresi, G. Tripodo, G. Cavallaro, F. S. Palumbo, G. Giammona, Eur. J. Pharm. Biopharm., 2008, 68, 267; DOI 10.1016/j.ejpb.2007.05.006.CrossRefGoogle Scholar
  3. 3.
    H. Kim, R. Fassihi, J. Pharm. Sci., 1997, 86, 316; DOI 10.1021/js960302s.CrossRefGoogle Scholar
  4. 4.
    T. K. Giri, D. Thakur, A. A. Ajazuddin, H. Badwaik, M. Tripathy, D. K. Tripathi, J. Mater. Sci. Mater. Med., 2013, 24, 1179; DOI 10.1007/s10856-013-4884-7.CrossRefGoogle Scholar
  5. 5.
    Yu. S. Ovodov, V. V. Golovchenko, E. A. Gyunter, S. V. Popov, Pektinovye veshchestva rastenii Evropeiskogo severa Rossii [Pectin Substances of Plants of the European North of Russia], UrO RAN, Ekaterinburg, 2009, 110 pp. (in Russian).Google Scholar
  6. 6.
    A. A. Karelin, Yu. E. Tsvetkov, N. E. Nifantiev, Russ. Chem. Rev., 2017, 86, 1073; DOI 10.1070/RCR4750.CrossRefGoogle Scholar
  7. 7.
    S. T. Minzanova, V. F. Mironov, A. I. Konovalov, A. B. Vyshtakalyuk, O. V. Tsepaeva, A. Z. Mindubaev, L. G. Mironova, V. V. Zobov, Pektiny iz netraditsionnykh istochnikov: tekhnologiya, struktura, svoistva i biologicheskaya aktivnost´ [Pectins from Nontraditional Sources: Technology, Structure, Properties, and Biological Activity], Pechat´-Servis-XXI vek, Kazan, 2011, 224 pp. (in Russian).Google Scholar
  8. 8.
    S. Schiewer, M. Iqbal, J. Hazard. Mat., 2010, 177, 899; DOI 10.1016/j.jhazmat.2010.01.001.CrossRefGoogle Scholar
  9. 9.
    P. Castaldi, G. Lauro, C. Senette, S. Deiana, Plant Physiol. Biochem., 2010, 48, 1008; DOI 10.1016/j.plaphy.2010.09.017.CrossRefGoogle Scholar
  10. 10.
    P. Chomto, J. Nunthanid, Carbohyd. Polym., 2017, 174, 25; DOI 10.1016/j.carbpol.2017.06.049.CrossRefGoogle Scholar
  11. 11.
    N.-Th. Tung, Th.-M.-H. Pham, Th.-H. Nguyen, Th.-T. Pham, Th.-Q. Nguyen, J. Drug Deliv. Sci. Technol., 2016, 33, 19; DOI 10.1016/j.jddst.2016.03.004.CrossRefGoogle Scholar
  12. 12.
    Zh.-Sh. Zhang, X.-M. Wang, Zh.-P. Han, L. Yin, M.-X. Zhao, Sh.-Ch. Yu, Bioorg. Med. Chem. Lett., 2012, 22, 489; DOI 10.1016/j.bmcl.2011.10.100.CrossRefGoogle Scholar
  13. 13.
    T. Miyada, A. Nakajima, K. Ebihara, Brit. J. Nutr., 2011, 106, 73; DOI 10.1017/S0007114510005842.CrossRefGoogle Scholar
  14. 14.
    F. Hintzen, S. Hauptstein, G. Perera, A. Bernkop-Schnürch, Eur. J. Pharm. Biopharm., 2013, 85, 1266; DOI 10.1016/j. ejpb.2013.09.017.CrossRefGoogle Scholar
  15. 15.
    X. Huang, X. Huang, Y. Gong, H. Xiao, D. J. McClements, K. Hu, Food Res. Intern., 2016, 87, 1; DOI 10.1016/j. foodres.2016.06.009.CrossRefGoogle Scholar
  16. 16.
    S. T. Minzanova, V. F. Mironov, A. B. Vyshtakalyuk, O. V. Tsepaeva, L. G. Mironova, A. Z. Mindubaev, I. R. Nizameev, K. V. Kholin, V. A. Milyukov, Carbohyd. Polym., 2015, 134, 524; DOI 10.1016/j.carbpol.2015.07.034.CrossRefGoogle Scholar
  17. 17.
    S. T. Minzanova, V. F. Mironov, A. B. Vyshtakalyuk, O. V. Tsepaeva, L. G. Mironova, I. S. Ryzhkina, L. I. Murtazina, A. T. Gubaidullin, Dokl. Chem., 2013, 452, 230; DOI 10.1134/S0012500813090048.CrossRefGoogle Scholar
  18. 18.
    S. G. Izmailov, S. M. Gorbunov, G. A. Izmailov, I. V. Zaikonnikova, V. S. Reznik, N. G. Abdrakhmanova, N. G. Pashkurov, M. Yu. Kedrin, M. Kh. Gerasimova, V. N. Garaev, A. G. Izmailov, I. V. Podushkina, G. B. Evranova, A. A. Muslinkin, Antib. khimioter. [Antibiot. Chemother.], 1999, 8, 12 (in Russian).Google Scholar
  19. 19.
    E. E. Zvereva, I. I. Vandyukova, A. E. Vandyukov, S. A. Katsuba, A. R. Khamatgalimov, V. I. Kovalenko, Russ. Chem. Bull., 2012, 61, 1199; DOI 10.1007/s111.CrossRefGoogle Scholar
  20. 20.
    Zetasizer Nano Series. User Manual, Malvern Instruments Ltd, Malvern (UK), 2008.Google Scholar
  21. 21.
    L. A. Kazitsyna, Primenenie UF-, IK-i YaMR-spektroskopii v organicheskoi khimii: uchebnoe posobie dlya vuzov [The Application of UV, IR, and NMR Spectroscopy in Organic Chemistry: Manual for Higher Educational Institutions], Vysshaya Shkola, Moscow, 1971, p. 24 (in Russian).Google Scholar
  22. 22.
    N. B. Mel´nikova, D. A. Panteleev, O. E. Zhil´tsova, A. A. Volkov, M. V. Gulenova, T. V. Salikova, Vestn. Nizhegor. un-ta im. N. I. Lobachevskogo [Bulletin of N. I. Lobachevskii Nizhny Novgorod University], 2011, 5, 91 (in Russian). 23–Google Scholar
  23. 1.
    T. Urashima, K. Fukuda, M. Messer, Animal, 2012, 6, 369.CrossRefGoogle Scholar
  24. 2.
    P. Hallgren, A. Lundblad, J. Biol. Chem., 1977, 252, 1014.Google Scholar
  25. 3.
    P. Hallgren, A. Lundblad, J. Biol. Chem., 1977, 252, 1023.Google Scholar
  26. 4.
    M. Lemonnier, B. Fournet, R. Bourillon, Biochem. Biophys. Res. Commun., 1977, 77, 767.CrossRefGoogle Scholar
  27. 5.
    J. Parkkinen, J. Finne, Eur. J. Biochem., 1983, 136, 355.CrossRefGoogle Scholar
  28. 6.
    A. Kobata, Proc. Jpn. Acad., Ser. B, 2010, 87, 731.CrossRefGoogle Scholar
  29. 7.
    Q. Hong, L. R. Ruhaak, S. M. Totten, J. T. Smilowitz, J. B. German, C. B. Lebrilla, Anal. Chem., 2014, 86, 2640.CrossRefGoogle Scholar
  30. 8.
    T. Urashima, M. Kitaoka, T. Terabayashi, K. Fukuda, M. Ohnishi, A. Kobata, in Milk Oligosaccharides: Sources, Properties and Applications, Ed. N. S. Gordon, Nova Science Publishers, Hauppauge, 2011, pp. 1–58.Google Scholar
  31. 9.
    F. Leo, S. Asakuma, T. Nakamura, K. Fukuda, A. Senda, T. Urashima, J. Chromatogr. A, 2009, 1216, 1520.CrossRefGoogle Scholar
  32. 10.
    J. Wada, T. Ando, T. M. Kiyohara, H. Ashida, M. Kitaoka, M. Yamaguchi, H. Kumagai, T. Katayama, K. Yamamoto, Appl. Environ. Microbiol., 2008, 74, 3996.CrossRefGoogle Scholar
  33. 11.
    T. Thongaram, J. Hoeflinger, J. Chow, M. Miller, J. Dairy Sci., 2017, 100, 7825.CrossRefGoogle Scholar
  34. 12.
    K. Toron, A. Miranda, A. Abrao, M. Morais, T. Morais, Food Chem., 2019, 274, 691.CrossRefGoogle Scholar
  35. 13.
    H. Kogelberg, V. E. Piskarev, Y. Zhang, A. M. Lawson, W. Chai, Eur. J. Biochem., 2004, 271, 1172.CrossRefGoogle Scholar
  36. 14.
    W. Chai, V. E. Piskarev, Y. Zhang, A. M. Lawson, H. Kogelberg, Arch. Biochem. Biophys., 2005, 434, 116.CrossRefGoogle Scholar
  37. 15.
    A. Pfenninger, S.-Y. Chan, M. Karas, B. Finke, B. Stahl, C. E. Costello, Int. J. Mass Spectrom., 2008, 278, 129.CrossRefGoogle Scholar
  38. 16.
    L. M. Likhosherstov, O. S. Novikova, V. N. Shibaev, Dokl. Chem., 2002, 383, 89.CrossRefGoogle Scholar
  39. 17.
    L. M. Likhosherstov, O. S. Novikova, I. A. Yamskov, V. E. Piskarev, Russ. Chem. Bul., 2012, 61, 1816.CrossRefGoogle Scholar
  40. 18.
    L. M. Likhosherstov, O. S. Novikova, N. G. Kolotyrkina, I. A. Yamskov, V. E. Piskarev, Russ. Chem. Bul., 2014, 63, 507.CrossRefGoogle Scholar
  41. 19.
    N. A. Samoilova, M. A. Krayukhina, T. A. Babushkina, I. A. Yamskov, L. M. Likhosherstov, V. E. Piskarev, J. Appl. Polym. Sci., 2017, 134, 44718; DOI: 10.1002/app.44718.CrossRefGoogle Scholar
  42. 20.
    J. Shang, V. E. Piskarev, M. Xia, P. Huang, X. Jiang, L. M. Likhosherstov, O. S. Novikova, D. S. Newburg, D. M. Ratner, Glycobiology, 2013, 23, 1491.CrossRefGoogle Scholar
  43. 21.
    N. A. Samoilova, M. A. Krayukhina, D. A. Popov, N. M. Anuchina, V. E. Piskarev, Biointerface Res. Appl. Chem., 2018, 8, 3095.Google Scholar
  44. 22.
    L. M. Likhosherstov, O. S. Novikova, V. N. Shibaev, N. K. Kochetkov, Russ. Chem. Bill., 1996, 45, 1760.CrossRefGoogle Scholar
  45. 23.
    P. A. Belyakov, V. I. Kadentsev, A. O. Chizhov, N. G. Kolotyrkina, A. S. Shashkov, V. P. Ananikov, Mendeleev Commun., 2010, 20, 125.CrossRefGoogle Scholar
  46. 24.
    W. Chai, V. E. Piskarev, A. M. Lawson, J. Am. Soc. Mass Spectrom., 2002, 13, 670.CrossRefGoogle Scholar
  47. 25.
    L. M. Likhosherstov, O. S. Novikova, N. G. Kolotyrkina, B. B. Berezin, V. E. Piskarev, Russ. Chem. Bul., 2018, 67, 371.CrossRefGoogle Scholar
  48. 26.
    L. M. Likhosherstov, O. S. Novikova, A. O. Zheltova, V. N. Shibaev, Russ. Chem. Bull., 2000, 49, 1454.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • L. M. Likhosherstov
    • 1
    Email author
  • O. S. Novikova
    • 1
  • N. G. Kolotyrkina
    • 1
  • V. E. Piskarev
    • 2
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations