Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 389–393 | Cite as

New tetrylenes based on substituted diethylenetriamines: synthesis and use as initiators for ε-caprolactone polymerization

  • B. N. Mankaev
  • K. V. Zaitsev
  • E. A. Kuchuk
  • M. V. Vershinina
  • G. S. Zaitseva
  • M. P. Egorov
  • S. S. KarlovEmail author
Full Articles
  • 4 Downloads

Abstract

The reactions of 3-benzyl-1,5-ditosyl-1,3,5-triazapentane (1) and 3-benzyl-1,5-dimesityl- 1,3,5-triazapentane (2) with one equivalent of Lappert´s germylene or stannylene (M[N(SiMe3)2]2, where M = Ge, Sn) produced germylenes and stannylenes of the general formula PhCH2N(CH2CH2NR)2M, where M = Ge, R = 4-MeC6H4SO2– (3); 2,4,6-Me3C6H2– (5); M = Sn, R = 4-MeC6H4SO2– (4); 2,4,6-Me3C6H2– (6), in satisfactory yields. According to NMR data (1H, 13C, 119Sn), stannylenes 4 and 6 are monomeric in solution, and the coordination number of tin is four. The synthesized stannylenes exhibited very high (compound 4) and moderate (compound 6) activity as initiators for bulk polymerization of ε-caprolactone, resulting in the synthesis of high-molecular-weight polymers with relatively narrow molecular-weight distribution. Previously unknown triamine 2 was synthesized by benzylation of HN(CH2CH2NHMes)2 with benzyl chloride in the presence of K2CO3.

Key words

germanium tin germylenes stannylenes tetrylenes ring-opening polymerization poly-ε-caprolactone 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Harris, M. F. Lappert, J. Chem. Soc., Chem. Commun., 1974, 21, 895.CrossRefGoogle Scholar
  2. 2.
    Y. Mizuhata, T. Sasamori, N. Tokitoh, Chem. Rev., 2009, 109, 3479.CrossRefGoogle Scholar
  3. 3.
    M. Weidenbruch, J. Organomet. Chem., 2002, 646, 39.CrossRefGoogle Scholar
  4. 4.
    L. Álvarez-Rodríguez, J. A. Cabeza, P. García-Álvarez, D. Polo, Coord. Chem. Rev., 2015, 300, 1.CrossRefGoogle Scholar
  5. 5.
    Y. Sarazin, J.-F. Carpentier, Chem. Rev., 2015, 115, 3564.CrossRefGoogle Scholar
  6. 6.
    O. Dechy-Cabaret, B. Martin-Vaca, D. Bourissou, Chem. Rev., 2004, 104, 6147.CrossRefGoogle Scholar
  7. 7.
    P. Degeé, P. Dubois, R. Jerôme, S. Jacobsen, H.-G. Fritz, Macromol. Symp., 1999, 144, 289.CrossRefGoogle Scholar
  8. 8.
    C.-M. Dong, K.-Y. Qiu, Z.-W. Gu, X.-D. Feng, Macromolecules, 2001, 34, 4691.CrossRefGoogle Scholar
  9. 9.
    Y. Nakayama, K. Aihara, Z. Cai, T. Shiono, C. Tsutsumi, Int. J. Mol. Sci., 2017, 18, 1312.CrossRefGoogle Scholar
  10. 10.
    L. Wang, S. C. Rosca, V. Poirier, S. Sinbandhit, V. Dorcet, T. Roisnel, J. F. Carpentier, Y. Sarazin, Dalton Trans., 2014, 43, 4268.CrossRefGoogle Scholar
  11. 11.
    L. Wang, V. Poirier, F. Ghiotto, M. Bochmann, R. D. Cannon, J. F. Carpentier, Y. Sarazin, Macromolecules, 2014, 47, 2574.CrossRefGoogle Scholar
  12. 12.
    L. Wang, C. E. Kefalidis, S. Sinbandhit, V. Dorcet, J. F. Carpentier, L. Maron, Y. Sarazin, Chem.–A Eur. J., 2013, 19, 13463.CrossRefGoogle Scholar
  13. 13.
    V. Poirier, T. Roisnel, S. Sinbandhit, M. Bochmann, J. F. Carpentier, Y. Sarazin, Chem.–A Eur. J., 2012, 18, 2998.CrossRefGoogle Scholar
  14. 14.
    K. B. Aubrecht, M. A. Hillmyer, W. B. Tolman, Macromolec ules, 2002, 35, 644.CrossRefGoogle Scholar
  15. 15.
    A. P. Dove, V. C. Gibson, E. L. Marshall, A. J. P. White, D. J. Williams, Chem. Commun., 2001, 283.Google Scholar
  16. 16.
    A. P. Dove, V. C. Gibson, E. L. Marshall, H. S. Rzepa, A. J. P. White, D. J. Williams, J. Am. Chem. Soc., 2006, 128, 9834.CrossRefGoogle Scholar
  17. 17.
    N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, A. J. P. White, S. H. Dale, M. R. J. Elsegood, J. Chem. Soc., Dalton Trans., 2007, 47, 4464.CrossRefGoogle Scholar
  18. 18.
    N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, M. R. J. Elsegood, J. Chem. Soc., Dalton Trans., 2009, 3710.Google Scholar
  19. 19.
    A. Dumitrescu, B. Martin-Vaca, H. Gornitzka, J. Cazaux, D. Bourissou, G. Bertrand, Eur. J. Inorg. Chem., 2002, 1948.Google Scholar
  20. 20.
    B. N. Mankaev, K. V. Zaitsev, V. S. Timashova, G. S. Zaitseva, M. P. Egorov, S. S. Karlov, Russ. Chem. Bull., 2018, 67, 542.CrossRefGoogle Scholar
  21. 21.
    N. Nimitsiriwat, V. C. Gibson, E. L. Marshall, M. R. J. Elsegood, Inorg. Chem., 2008, 47, 5417.CrossRefGoogle Scholar
  22. 22.
    W. A. Ma, Z. X. Wang, Dalton Trans., 2011, 40, 1778.CrossRefGoogle Scholar
  23. 23.
    K. Phomphrai, C. Pongchan-o, W. Thumrongpatanaraks, P. Sangtrirutnugul, P. Kongsaeree, M. Pohmakotr, Dalton Trans., 2011, 40, 2157.CrossRefGoogle Scholar
  24. 24.
    J. L. Fauré, H. Gornitzka, R. Réau, D. Stalke, G. Bertrand, Eur. J. Inorg. Chem., 1999, 2295.Google Scholar
  25. 25.
    M. Huang, M. M. Kireenko, E. K. Lermontova, A. V. Churakov, Y. F. Oprunenko, K. V. Zaitsev, D. Sorokin, K. Harms, J. Sundermeyer, G. S. Zaitseva, S. S. Karlov, Z. Anorg. Allg. Chem., 2013, 639, 502.CrossRefGoogle Scholar
  26. 26.
    E. K. Lermontova, M. M. Huan, A. V. Churakov, J. A. K. Howard, M. V. Zabalov, S. S. Karlov, G. S. Zaitseva, J. Chem. Soc., Dalton Trans., 2009, 4695.Google Scholar
  27. 27.
    M. Huang, M. M. Kireenko, K. V. Zaitsev, Y. F. Oprunenko, A. V. Churakov, J. A. K. Howard, E. K. Lermontova, D. Sorokin, T. Linder, J. Sundermeyer, S. S. Karlov, G. S. Zaitseva, Eur. J. Inorg. Chem., 2012, 3712.Google Scholar
  28. 28.
    Y. Feng, J. Aponte, P. J. Houseworth, P. D. Boyle, E. A. Ison, Inorg. Chem., 2009, 48, 11058.CrossRefGoogle Scholar
  29. 29.
    K. C. Hultzsch, F. Hampel, T. Wagner, Organometallics, 2004, 23, 2601.CrossRefGoogle Scholar
  30. 30.
    P. E. Collier, S. M. Pugh, H. S. C. Clark, J. B. Love, A. J. Blake, F. G. N. Cloke, P. Mountford, Inorg. Chem., 2000, 39, 2001.CrossRefGoogle Scholar
  31. 31.
    D. J. Wilson, A. Sebastian, F. G. N. Cloke, A. G. Avent, P. B. Hitchcock, Inorg. Chim. Acta, 2003, 345, 89.CrossRefGoogle Scholar
  32. 32.
    R. R. Schrock, J. Adamchuk, K. Ruhland, L. P. H. Lopez, Organometallics, 2003, 22, 5079.CrossRefGoogle Scholar
  33. 33.
    A. D. Schwarz, Z. Chu, P. Mountford, Organometallics, 2010, 29, 1246.CrossRefGoogle Scholar
  34. 34.
    L.-C. Liang, R. R. Schrock, W. M. Davis, D. H. McConville, J. Am. Chem. Soc., 1999, 121, 5797.CrossRefGoogle Scholar
  35. 35.
    L. Wang, C. E. Kefalidis, T. Roisnel, S. Sinbandhit, L. Maron, J.-F. Carpentier, Y. Sarazin, Organometallics, 2015, 34, 2139.CrossRefGoogle Scholar
  36. 36.
    S. R. Foley, Y. Zhou, G. P. A. Yap, D. S. Richeson, Inorg. Chem., 2000, 39, 924.CrossRefGoogle Scholar
  37. 37.
    F. Antolini, P. B. Hitchcock, A. V. Khvostov, M. F. Lappert, Can. J. Chem., 2006, 84, 269.CrossRefGoogle Scholar
  38. 38.
    K. V. Zaitsev, V. S. Cherepakhin, A. V. Churakov, A. S. Peregudov, B. N. Tarasevich, M. P. Egorov, G. S. Zaitseva, S. S. Karlov, Inorg. Chim. Acta, 2016, 443Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • B. N. Mankaev
    • 1
    • 2
  • K. V. Zaitsev
    • 1
    • 2
  • E. A. Kuchuk
    • 1
    • 2
  • M. V. Vershinina
    • 1
    • 2
  • G. S. Zaitseva
    • 1
    • 2
  • M. P. Egorov
    • 1
  • S. S. Karlov
    • 1
    • 2
    Email author
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations