Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 347–350 | Cite as

The reaction of amidoximes with carboxylic acids or their esters under high-pressure conditions

  • S. V. Baikov
  • G. A. Stashina
  • E. I. Chernoburova
  • V. B. Krylov
  • I. V. ZavarzinEmail author
  • E. R. Kofanov
Full Articles

Abstract

3,5-Disubstituted 1,2,4-oxadiazoles were synthesized by the reaction of amidoximes with carboxylic acids or their esters under high-pressure conditions (10 kbar). The reaction proceeds without the use of other reagents or catalysts. Both aliphatic and aromatic carboxylic acids undergo this reaction. The obtained 1,2,4-oxadiazoles possess high fungicidal activity.

Key words

amidoximes carboxylic acids esters 1,2,4-oxadiazoles high pressure fungicidal activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Csuros, Ther. Hung., 1989, 37, 50.Google Scholar
  2. 2.
    D. Lednicer, Strategies for Organic Drug Synthesis and Design, J. Willey and Sons, New Jersey, 2009, 304.Google Scholar
  3. 3.
    S. W. Peltz, M. Morsy, E. M. Welch, A. Jacobson, Ann. Rev. Med., 2013, 64, 407.CrossRefGoogle Scholar
  4. 4.
    J. Chen, B. Levant, S. Wanga, Bioorg. Med. Chem. Lett., 2012, 22, 5612.CrossRefGoogle Scholar
  5. 5.
    E. Spink, D. Ding, Z. Peng, M. A. Boudreau, E. Leemans, E. Lastochkin, W. Song, K. Lichtenwalter, P. I. O´Daniel, S. A. Testero, H. Pi, V. A. Schroeder, W. R. Wolter, N. T. Antunes, M. A. Suckow, S. Vakulenko, M. Chang, S. Mobashery, J. Med. Chem., 2015, 58, 1380.CrossRefGoogle Scholar
  6. 6.
    N. Shruthi, B. Poojary, V. Kumar, M. M. Hussain, V. M. Rai, V. R. Pai, M. Bhat, B. C. Revannasiddappa, RSC Adv., 2016, 56, 8303.CrossRefGoogle Scholar
  7. 7.
    H. Wei, C. He, J. Zhang, J. M. Shreeve, Angew. Chem., Int. Ed., 2015, 54, 9367.CrossRefGoogle Scholar
  8. 8.
    S. Hernandez-Ainsa, J. Barbera, M. Marcos, J. L. Serrano, Macromolecules, 2012, 45, 1006.CrossRefGoogle Scholar
  9. 9.
    I. Kumita, A. Niwa, Nippon Noyaku Gakkaishi, 2001, 26, 60.Google Scholar
  10. 10.
    N. Sathaiah, S. Palle, R. Nuchu, J. Pharm. Pharm. Sci., 2016, 5(3), 1247.Google Scholar
  11. 11.
    M. V. Avval, V. S. Murthy, Int. J. Chem. Pharm. Sci., 2014, 2(3), 678.Google Scholar
  12. 12.
    N. K. Fuloria, V. Singh, M. Shaharyar, A. Mohd, Braz. J. Chem., 2008, 16(16), 11.Google Scholar
  13. 13.
    S. C. Karad, V. B. Purohit, R. P. Thummar, B. K. Vaghasiya, R. D. Kamani, R. Thakor, V. R. Thakkar, S. S. Thakkar, S. Sampark, A. Ray, K. Dipak, Eur. J. Med. Chem., 2017, 126, 894.CrossRefGoogle Scholar
  14. 14.
    A. Pace, P. Pierro, Org. Biomol. Chem., 2009, 7, 4337.CrossRefGoogle Scholar
  15. 15.
    P. A. Tsiulin, V. V. Sosnina, G. G. Krasovskaya, A. S. Danilova, S. V. Baikov, E. R. Kofanov, Russ. J. Org. Chem., 2011, 47, 1874.CrossRefGoogle Scholar
  16. 16.
    L.-L. Xu, J.-F. Zhu, X.-L. Xu, J. Zhu, L. Li, M.-Y. Xi, Z.-Y. Jiang, M.-Y. Zhang, F. Liu, M.-C. Lu, Q.-C. Bao, Q. Li, C. Zhang, J.-L. Wei, X.-J. Zhang, L.-S. Zhang, Q.-D. You, H.-P. Sun, J. Med. Chem., 2015, 58, 5419.CrossRefGoogle Scholar
  17. 17.
    G. Shanker, C. Tschierske, Tetrahedron, 2011, 67, 8635.CrossRefGoogle Scholar
  18. 18.
    D. Kumar, G. Patel, A. K. Chavers, K.-H. Chang, K. Shah, Eur. J. Med. Chem., 2011, 46, 3085.CrossRefGoogle Scholar
  19. 19.
    R. Sheng, C. Li, G. Lin, S. Shangguan, Y. Gu, N. Qiu, J. Cao, Q. He, B. Yang, Y. Hu, RSC Adv., 2015, 5, 817.Google Scholar
  20. 20.
    G. L. Khatik, J. Kaur, V. Kumar, K. Tikoo, V. A. Nair, Bioorg. Med. Chem. Lett., 2012, 22, 1912.CrossRefGoogle Scholar
  21. 21.
    G. Wagner, C. Weber, O. Nyeki, K. Nogradi, A. Bielik, L. Molnar, A. Bobok, A. Horvath, B. Kiss, S. Kolok, J. Nagy, D. Kurko, K. Gal, I. Greiner, Z. Szombathelyi, G. M. Keseru, G. Domany, Bioorg. Med. Chem. Lett., 2010, 20, 3737.CrossRefGoogle Scholar
  22. 22.
    B. Sadek, K. M. S. Fahelelbom, Molecules, 2011, 16, 4339.CrossRefGoogle Scholar
  23. 23.
    N. I. Ziedan, F. Stefanelli, S. Fogli, A. D. Westwell, Eur. J. Med. Chem., 2010, 45, 4523.CrossRefGoogle Scholar
  24. 24.
    V. Yu. Rozhkov, L. V. Batog, M. I. Struchkova, Mendeleev Commun., 2008, 18, 161.CrossRefGoogle Scholar
  25. 25.
    T.-H. Huang, H.-Y. Tu, M. Liu, A.-D. Zhang, Heterocycles, 2011, 83, 91.CrossRefGoogle Scholar
  26. 26.
    S. V. Baykov, A. A. Zharov, G. A. Stashina, I. V. Zavarzin, E. R. Kofanov, Mendeleev Commun., 2016, 26, 264.CrossRefGoogle Scholar
  27. 27.
    L. F. C. da Leite, R. M. Srivastava, A. P. Cavalcanti, Bull. Soc. Chim. Belg., 1989, 98, 203.CrossRefGoogle Scholar
  28. 28.
    A. A. Zharov, I. A. Guzyaeva, Russ. Chem. Bull., 2010, 59, 1225.CrossRefGoogle Scholar
  29. 29.
    H. Gallardo, I. M. Begnini, Mol. Cryst. Liq. Cryst., 1995, 258, 85.CrossRefGoogle Scholar
  30. 30.
    M. Outirite, M. Lebrini, M. Lagrenee, F. Bentiss, J. Heterocycl. Chem., 2007, 44(6), 1529.CrossRefGoogle Scholar
  31. 31.
    S. Rostamizadeh, H. R. Ghaieni, R. Aryan, A.-M. Amani, Synth. Commun., 2010, 40, 3084.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • S. V. Baikov
    • 1
  • G. A. Stashina
    • 2
  • E. I. Chernoburova
    • 2
  • V. B. Krylov
    • 2
  • I. V. Zavarzin
    • 2
    Email author
  • E. R. Kofanov
    • 3
  1. 1.K. D. Ushinsky Yaroslavl State Pedagogical UniversityYaroslavlRussian Federation
  2. 2.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  3. 3.Yaroslavl State Technical UniversityYaroslavlRussian Federation

Personalised recommendations