Advertisement

Russian Chemical Bulletin

, Volume 68, Issue 2, pp 301–312 | Cite as

Synthesis, microstructure, and electrochemical performance of Li-rich layered oxide cathode materials for Li-ion batteries

  • Е. V. MakhoninaEmail author
  • L. S. Pechen
  • V. V. Volkov
  • А. М. Rumyantsev
  • Yu. М. Koshtyal
  • А. О. Dmitrienko
  • Yu. А. Politov
  • V. S. Pervov
  • I. L. Eremenko
Full Articles
  • 8 Downloads

Abstract

Li-rich layered oxides Li1.2Mn0.54Ni0.13Co0.13O2 were synthesized by modified Pechini method using various compositions of the reaction mixture. Difference in the electrochemical performance of cathodes on their basis is explained by different morphology and microstructure of the materials. The porous hierarchical structure favors a better electrochemical performance. The presence of defects, including crystal twins, in the samples is considered to be a major reason that leads to their poor cyclability and rate capability.

Key words

Li-rich oxides cathode materials Li-ion batteries Pechini process electron microdiffraction microstructure 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. L. Kulova, A. M. Skundin, Russ. Chem. Bull., 2017, 66, 1329.CrossRefGoogle Scholar
  2. 2.
    S. Wang, Z. Zhang, A. Deb, L. Yang, S. Hirano, Ind. Eng. Chem. Res., 2014, 53, 19525.CrossRefGoogle Scholar
  3. 3.
    S. A. Novikova, A. B. Yaroslavtsev, Russ. Chem. Bull., 2017, 66, 1336.CrossRefGoogle Scholar
  4. 4.
    M. M. Thackeray, C. S. Johnson, J. T. Vaughey, N. Li, S. A. Hackney, J. Mater. Chem., 2005, 15, 2257.CrossRefGoogle Scholar
  5. 5.
    M. M. Thackeray, C. Wolverton, E. D. Isaacs, Energy Environ. Sci., 2015, 5, 7854.CrossRefGoogle Scholar
  6. 6.
    N.-S. Choi, Z. Chen, S. A. Freunberger, X. Ji, Y.-K. Sun, K. Amine, G. Yushin, L. F. Nazar, J. Cho, P. G. Bruce, Angew. Chem., Int. Ed., 2012, 51, 9994.CrossRefGoogle Scholar
  7. 7.
    E. M. Erickson, F. Schipper, T. R. Penki, C. Erk, J.-Y. Shin, F. F. Chesneau, B. Markovsky, D. Aurbach, J. Electrochem. Soc., 2017, 164, A6341.CrossRefGoogle Scholar
  8. 8.
    T. Ohzuku, M. Nagayama, K. Tsuji, K. Ariyoshi, J. Mater. Chem., 2011, 21, 10179.CrossRefGoogle Scholar
  9. 9.
    S. Hy, H. Liu, M. Zhang, D. Qian, B.-J. Hwang, Y. S. Meng, Energy Environ. Sci., 2016, 9, 1931.CrossRefGoogle Scholar
  10. 10.
    P. K. Nayak, E. M. Erikson, F. Shipper, T. R. Penki, N. Munichandraiah, P. Adelhelm, H. Sclar, F. Amalraj, B. Markovsky, D. Aurbach, Adv. Energy Mater., 2018, 8, 1702397.CrossRefGoogle Scholar
  11. 11.
    P. Rozier, J. M. Tarascon, J. Electrochem. Soc., 2015, 162, A2490.CrossRefGoogle Scholar
  12. 12.
    X. Yu, Y. Lyu, L. Gu, H. M. Wu, S.-M. Bak, Y. N. Zhou, K. Amine, S. N. Ehrlich, H. Li, K.-W. Nam, X.-Q. Yang, Adv. Energy Mater., 2014, 4, 1300950.CrossRefGoogle Scholar
  13. 13.
    J.-S. Kim, C. S. Johnson, M. M. Thackeray, Electrochem. Commun., 2002, 4, 205.CrossRefGoogle Scholar
  14. 14.
    A. Manthiram, J. C. Knight, S.-T. Myung, S.-M. Oh, Y.-K. Sun, Adv. Energy Mater., 2016, 6, 1501010.CrossRefGoogle Scholar
  15. 15.
    D. L. Ye, L. Z. Wang,Mater. Technol.: Adv. Funct. Mater., 2014, 29, A59.CrossRefGoogle Scholar
  16. 16.
    M. M. Thackeray, S. H. Kang, C. S. Johnson, J. T. Vaughey, R. Benedek, S. A. Hackney, J. Mater. Chem., 2007, 17, 3112.CrossRefGoogle Scholar
  17. 17.
    A. D. Robertson, P. G. Bruce, Chem. Mater., 2003, 15, 1984.CrossRefGoogle Scholar
  18. 18.
    A. R. Armstrong, M. Holzapfel, P. Novak, C. S. Johnson, S. H. Kang, M. M. Thackeray, P. G. Bruce, J. Am. Chem. Soc., 2006, 128, 8694.CrossRefGoogle Scholar
  19. 19.
    C. R. Fell, D. Qian, K. J. Carroll, M. F. Chi, J. L. Jones, Y. S. Meng, Chem. Mater., 2013, 25, 1621.CrossRefGoogle Scholar
  20. 20.
    M. Sathiya, G. Rousse, K. Ramesha, C. P. Laisa, H. Vezin, M. T. Sougrati, M.-L. Doublet, D. Foix, D. Gonbeau, W. Walker, A. S. Prakash, M. Ben Hassine, L. Dupont, J.-M. Tarascon, Nature Mater., 2013, 12, 827.CrossRefGoogle Scholar
  21. 21.
    G. Assat, D. Foix, C. Delacourt, A. Iadecola, R. Dedryvère, J.-M. Tarascon, Chem. Mater., 2017, 29, 9714.CrossRefGoogle Scholar
  22. 22.
    E. McCalla, A. M. Abakumov, M. Saubanère, D. Foix, E. J. Berg, G. Rousse, M.-L. Doublet, D. Gonbeau, P. Novák, G. Van Tendeloo, R. Dominko, J.-M. Tarascon, Science, 2015, 350, 1516.CrossRefGoogle Scholar
  23. 23.
    J. Zheng, P. Xu, M. Gu, J. Xiao, N. D. Browning, P. Yan, C. Wang, J. G. Zhang, Chem. Mater., 2015, 27, 1381.CrossRefGoogle Scholar
  24. 24.
    A. K. Shukla, Q. M. Ramasse, C. Ophus, H. Duncan, F. Hage, G. Chen, Nature Comm., 2015, 6, 8711.CrossRefGoogle Scholar
  25. 25.
    M. M. Thackeray, S.-H. Kang, C. S. Johnson, J. T. Vaughey, S. A. Hackney, Electrochem. Commun., 2006, 8, 1531.CrossRefGoogle Scholar
  26. 26.
    H. Koga, L. Crogunnec, P. Mannessiez, M. Menetrier, F. Weill, L. Bourgeois, M. Duttine, E. Suard, C. Delmas, J. Phys. Chem. C, 2012, 116, 13497.CrossRefGoogle Scholar
  27. 27.
    H. Yu, H. Kim, Y. Wang, P. He, D. Asakura, Y. Nakamura, H. Zhou, Phys. Chem. Chem. Phys., 2012, 14, 6584.CrossRefGoogle Scholar
  28. 28.
    Y. Song, X. Zhao, C. Wang, H. Bi, J. Zhang, S. Li, M. Wang, R. Che, J. Mater. Chem. A, 2017, 5, 11214.CrossRefGoogle Scholar
  29. 29.
    J. R. Croy, M. Balasubramanian, K. G. Gallagher, A. K. Burrell, Acc. Chem. Res., 2015, 48, 2813.CrossRefGoogle Scholar
  30. 30.
    S. Kim, M. Aykol, V. I. Hegde, Z. Lu, S. Kirklin, J. R. Croy, M. M. Thackeray, C. Wolverton, Energy Environ. Sci., 2017, 10, 2201.CrossRefGoogle Scholar
  31. 31.
    E. V. Makhonina, L. S. Maslennikova, V. V. Volkov, A. E. Medvedeva, A. M. Rumyantsev, Yu. M. Koshtyal, M. Yu. Maximov, V. S. Pervov, I. L. Eremenko, Appl. Surf. Sci., 2018, 474, 25; DOI.org/10.1016/j.apsusc.2018.07.159.CrossRefGoogle Scholar
  32. 32.
    L. S. Pechen, E. V. Makhonina, A. M. Rumyantsev, Yu. M. Koshtyal, V. S. Pervov, I. L. Eremenko, Russ. J. Inorg. Chem., 2018, 63, 1534.CrossRefGoogle Scholar
  33. 33.
    W. Liu, G. C. Farrington, F. Chaput, B. Dunn, J. Electrochem. Soc., 1996, 143, 879.CrossRefGoogle Scholar
  34. 34.
    Bruker TOPAS 5 User Manual, Bruker AXS GmbH, Karlsruhe, 2015.Google Scholar
  35. 35.
    G. K. Williamson, W. M. Hall, Acta Metall., 1953, 1, 22.CrossRefGoogle Scholar
  36. 36.
    A. Boulineau, L. Croguennec, C. Delmas, F. Weill, Solid State Ionics, 2010, 180, 1652.CrossRefGoogle Scholar
  37. 37.
    A. J. Smith, J. C. Burns, J. R. Dahn, ESL, 2011, 14, A39.Google Scholar
  38. 38.
    Z. Chen, J. Wang, D. Chao, T. Baikie, L. Bai, S. Chen, Y. Zhao, T. C. Sum, J. Lin, Z. Shen, Sci. Rep., 2016, 6, 25771.CrossRefGoogle Scholar
  39. 39.
    D. Ma, Y. Li, P. Zhang, A. J. Cooper, A. M. Abdelkader, X. Ren, L. Deng, J. Power Sources, 2016, 311, 35.CrossRefGoogle Scholar
  40. 40.
    I. Bloom, L. Trahey, A. Abouimrane, I. Belharouak, X. Zhang, Q. Wu, W. Lu, D. P. Abrahama, M. Bettge, J. W. Elam, X. Meng, A. K. Burrell, C. Ban, R. Tenent, J. Nanda, N. Dudney, J. Power Sources, 2014, 249, 509.CrossRefGoogle Scholar
  41. 41.
    F. Lin, I. M. Markus, D. Nordlund, T.-C. Weng, M. D. Asta, H. L. Xin, M. M. Doeff, Nat. Commun., 2014, 5, 3529.CrossRefGoogle Scholar
  42. 42.
    N. Yabuuchi, K. Yoshii, C.-T. Myung, I. Nakai, S. Komaba, J. Am. Chem. Soc., 2011, 133, 4404.CrossRefGoogle Scholar
  43. 43.
    J. Cabana, B. J. Kwon, L. Hu, Acc. Chem. Res., 2018, 51, 299.CrossRefGoogle Scholar
  44. 44.
    S. S. Choi, H. S. Lim, J. Power Sources, 2002, 111, 130.CrossRefGoogle Scholar
  45. 45.
    V. V. Volkov, J. Van Landuyt, S. Amelinckx, V. S. Pervov, E. V. Makhonina, J. Solid State Chem., 1998, 135, 235.CrossRefGoogle Scholar
  46. 46.
    F. Fu, Y. Yao, H. Wang, G.-L. Xu, K. Amine, S.-G. Sund, M. Shao, Nano Energy, 2017, 35, 370.CrossRefGoogle Scholar
  47. 47.
    R. Yu, X. Zhang, T. Liu, X. Xu, Y. Huang, G. Wang, X. Wang, H. Shu, X. Yang, ACS Sustainable Chem. Eng., 2017, 5, 8970.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc. 2019

Authors and Affiliations

  • Е. V. Makhonina
    • 1
    Email author
  • L. S. Pechen
    • 1
  • V. V. Volkov
    • 1
  • А. М. Rumyantsev
    • 2
    • 3
  • Yu. М. Koshtyal
    • 2
    • 3
  • А. О. Dmitrienko
    • 4
  • Yu. А. Politov
    • 1
  • V. S. Pervov
    • 1
  • I. L. Eremenko
    • 1
  1. 1.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Ioffe Physico-Technical InstituteRussian Academy of SciencesSt. PetersburgRussian Federation
  3. 3.Peter the Great St. Petersburg Polytechnic UniversitySt. PetersburgRussian Federation
  4. 4.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations