New approaches to analogs of α-linked galactosylceramides based on functionalized serinol
- 8 Downloads
Abstract
New derivatives of serinol, 3-[4-(2-chloroethoxy)benzyloxy]-2-phthalimidopropan-1-ol and 3-[4-(2-azidoethoxy)phenoxy]-2-phthalimidopropan-1-ol, were synthesized and tested as glycosyl acceptors in stereoselective 1,2-cis-galactosylation in the benzyl-free synthesis of analogs of α-linked galactosylceramides. It was found that NIS/AgOTf-promoted glycosylation of 3-[4-(2-chloroethoxy)benzyloxy]-2-phthalimidopropan-1-ol with ethyl 4,6-O-(di-tert-butylsilylene)-1-thio-β-D-galactoside resulted in both the expected α-linked diastereomeric glycosides and the product of iodination of the benzyl group of the aglycon. This process was avoided by using the corresponding galactosyl imidate under Et3SiOTf promotion to give exclusively α-linked diastereometic serinol glycosides.
Key words
1,2-cis-galactosylation serinol galactosylceramidePreview
Unable to display preview. Download preview PDF.
References
- 1.S. Groux-Degroote, Y. Guérardel, P. Delannoy, in Carbohydrate Chemistry: State of the Art and Challenges for Drug Development: an Overview on Structure, Biological Roles, Synthetic Methods and Application as Therapeutics, Ed. L. Cipolla, Imperial College Press, London, 2016, p. 35–56.Google Scholar
- 2.B. Andreessen, A. Steinbüchel, AMB Express, 2011, 1, 12; DOI: 10.1186/2191-0855-1-12.CrossRefGoogle Scholar
- 3.U. Jost, B. Andreessen, D. Michalik, A. Steinbüchel, U. Kragl, Eng. Life Sci., 2017, 17, 479–488; DOI: 10.1002/elsc.201600116.CrossRefGoogle Scholar
- 4.G. Milkereit, V. M. Garamus, K. Veermans, R. Willumeit, V. Vill, Chem. Phys. Lipids, 2004, 131, 51–61; DOI: 10.1016/j. chemphyslip.2004.03.011.CrossRefGoogle Scholar
- 5.X. Zhang, A. Liu, Z. Zhao, Z. Li, Q. Li, Carbohydr. Res., 2017, 450, 49–53; DOI: 10.1016/j.carres.2017.08.013.CrossRefGoogle Scholar
- 6.N. M. Podvalnyy, P. I. Abronina, E. L. Zdorovenko, A. O. Chizhov, A. I. Zinin, V. I. Torgov, L. O. Kononov, Russ. Chem. Bull., 2014, 63, 497–500; DOI: 10.1007/s11172-014-0459-0.CrossRefGoogle Scholar
- 7.N. N. Kondakov, T. M. Mel´nikova, A. I. Zinin, V. I. Torgov, A. O. Chizhov, E. A. Gordeeva, N. V. Bovin, L. O. Kononov, Russ. Chem. Bull., 2014, 63, 501–506; DOI: 10.1007/s11172-014-0460-7.CrossRefGoogle Scholar
- 8.P. I. A bronina, K. G. Fedina, N. M. Podvalnyy, A. I. Zinin, A. O. Chizhov, N. N. Kondakov, V. I. Torgov, L. O. Kononov, Carbohydr. Res., 2014, 396, 25–36; DOI: 10.1016/j. carres.2014.05.017.CrossRefGoogle Scholar
- 9.N. N. Ko ndakov, T. M. Mel´nikova, T. V. Chekryzhova, M. V. Mel´nikova, A. I. Zinin, V. I. Torgov, A. O. Chizhov, L. O. Kononov, Russ. Chem. Bull., 2015, 64, 1142–1148; DOI: 10.1007/s11172-015-0991-6.CrossRefGoogle Scholar
- 10.P. I. Abronina, A. I. Zinin, D. A. Romashin, N. N. Malysheva, A. O. Chizhov, L. O. Kononov, Synlett, 2015, 26, 2267–2271; DOI: 10.1055/s-0035-1560172.CrossRefGoogle Scholar
- 11.M. V. Panova, N. M. Podvalnyy, E. L. Okun, P. I. Abronina, A. O. Chizhov, L. O. Kononov, Carbohydr. Res., 2018, 456, 35–44; DOI: 10.1016/j.carres.2017.11.002.CrossRefGoogle Scholar
- 12.P. I. Abronina, A. I. Zinin, D. A. Romashin, V. V. Tereshina, A. O. Chizhov, L. O. Kononov, Carbohydr. Res., 2018, 464, 28–43; DOI: 10.1016/j.carres.2018.05.005.CrossRefGoogle Scholar
- 13.P. I. Abronina, A. I. Zinin, N. N. Malysheva, E. V. Stepanova, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Synlett, 2017, 28, 1608–1613; DOI: 10.1055/s-0036-1589028.CrossRefGoogle Scholar
- 14.K. Ishihara, K. Nakano, M. Akakura, Org. Lett., 2008, 10, 2893–2896; DOI: 10.1021/ol8011277.CrossRefGoogle Scholar
- 15.A. I. Zinin, E. V. Stepanova, U. Jost, N. N. Kondakov, A. M. Shpirt, A. O. Chizhov, V. I. Torgov, L. O. Kononov, Russ. Chem. Bull., 2017, 66, 304–312; DOI: 10.1007/s11172-017-1732-9.CrossRefGoogle Scholar
- 16.A. Imamura, A. Kimura, H. Ando, H. Ishida, M. Kiso, Chem. Eur. J., 2006, 12, 8862–8870; DOI: 10.1002/chem.200600832.CrossRefGoogle Scholar
- 17.A. Imamura, H. Ando, H. Ishida, M. Kiso, Curr. Org. Chem., 2008, 12, 675–689; DOI: 10.2174/138527208784577358.CrossRefGoogle Scholar
- 18.A. Imamura, N. Matsuzawa, S. Sakai, T. Udagawa, S. Nakashima, H. Ando, H. Ishida, M. Kiso, J. Org. Chem., 2016, 81, 9086–9104; DOI: 10.1021/acs.joc.6b01685.CrossRefGoogle Scholar
- 19.N. Veerapen, M. Brigl, S. Garg, V. Cerundolo, L. R. Cox, M. B. Brenner, G. S. Besra, Bioorg. Med. Chem. Lett., 2009, 19, 4288–4291; DOI: 10.1016/j.bmcl.2009.05.095.CrossRefGoogle Scholar
- 20.S. Kramer, B. Nolting, A. J. Ott, C. Vogel, J. Carbohydr. Chem., 2000, 19, 891–921; DOI: 10.1080/07328300008544125.CrossRefGoogle Scholar
- 21.S. Mehta, D. M. Whitfield, Tetrahedron, 2000, 56, 6415–6425; DOI: 10.1016/S0040-4020(00)00612-8.CrossRefGoogle Scholar
- 22.H. Gold, R. G. Boot, J. Aerts, H. S. Overkleeft, J. D. C. Codée, G. A. van der Marel, Eur. J. Org. Chem., 2011, 1652–1663; DOI: 10.1002/ejoc.201001690.Google Scholar
- 23.L. O. Kononov, N. N. Malysheva, A. V. Orlova, A. I. Zinin, T. V. Laptinskaya, E. G. Kononova, N. G. Kolotyrkina, Eur. J. Org. Chem., 2012, 1926–1934; DOI: 10.1002/ejoc.201101613.Google Scholar
- 24.L. O. Kononov, RSC Adv., 2015, 5, 46718–46734; DOI: 10.1039/c4ra17257d.CrossRefGoogle Scholar