Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 12, pp 2266–2270 | Cite as

Photochromic transformations of amphiphilic spiropyran in acetonitrile solutions and at the air/water interface

  • D. A. Ivakhnenko
  • A. V. Shokurov
  • G. V. Lyubimova
  • N. L. Zaichenko
  • V. V. Arslanov
  • O. A. RaitmanEmail author
Full Articles
  • 6 Downloads

Abstract

The results of a study of the photochromic properties of 1´-hexadecyl-3´,3´-dimethyl-6-nitro-1´,3´-dihydrospiro[chromene-2,2´-indole] (SP) are presented. The kinetic characteristics of photophysical processes occurring in acetonitrile solution of SP upon irradiation with UV light and during dark relaxation are determined. It is shown that spiropyran modified at the nitrogen atom by a long-chain hydrocarbon radical exhibits photochromic properties in the dissolved state, with the rate of the direct photocoloration exceeding the rate of dark relaxation by an order of magnitude. Comparative studies of SP photoreaction in dissolved and 2D states are carried out. The obtained results open up broad prospects for application of such photochromes in thin-film devices obtained using the Langmuir monolayer technique.

Key words

spiropyrans photochromism amphiphilic compounds Langmuir monolayers 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Berkovic, V. Krongauz, V. Weiss, Chem. Rev., 2000, 100, 1741–1754.CrossRefGoogle Scholar
  2. 2.
    V. I. Minkin, in Molecular Switches, Wiley-VCH, Weinheim, Germany, 2011, 37–80.CrossRefGoogle Scholar
  3. 3.
    V. I. Minkin, Chem. Rev., 2004, 104, 2751–2776.CrossRefGoogle Scholar
  4. 4.
    X. Guo, D. Zhang, G. Zhang, D. Zhu, J. Phys. Chem. B, 2004, 108, 11942–11945.CrossRefGoogle Scholar
  5. 5.
    F. M. Raymo, S. Giordani, Proc. Natl. Acad. Sci., 2002, 99, 4941–4944.CrossRefGoogle Scholar
  6. 6.
    F. Ghailane, Opt. Eng., 1995, 34, 480.CrossRefGoogle Scholar
  7. 7.
    S. S. Xue, G. Manivannan, R. A. Lessard, Thin Solid Films, 1994, 253, 228–232.CrossRefGoogle Scholar
  8. 8.
    M.-Q. Zhu, L. Zhu, J. J. Han, W. Wu, J. K. Hurst, A. D. Q. Li, J. Am. Chem. Soc., 2006, 128, 4303–4309.CrossRefGoogle Scholar
  9. 9.
    V. Z. Shirinian, A. A. Shimkin, in Heterocyclic Polymethine Dyes, Springer, Berlin-Heidelberg, 2008, pp. 75–105.CrossRefGoogle Scholar
  10. 10.
    I. Zakharova, V. Pimienta, V. I. Minkin, A. V. Metelitsa, J. C. Micheau, Russ. Chem. Bull., 2009, 58, 1329–1337. aaaaaaCrossRefGoogle Scholar
  11. 11.
    I. Gruda, R. M. Leblanc, Can. J. Chem., 1976, 1–5.Google Scholar
  12. 12.
    C. J. Drummond, D. N. Furlong, J. Chem. Soc. Faraday Trans., 1990, 86, 3613–3621.CrossRefGoogle Scholar
  13. 13.
    V. Z. Shirinian, V. A. Barachevsky, A. A. Shimkin, M. M. Krayushkin, A. K. Mailian, D. V. Tsyganov, O. A. Vinter, O. V. Venidiktova, Russ. Chem. Bull., 2010, 59, 828–832.CrossRefGoogle Scholar
  14. 14.
    X. Song, J. Zhou, Y. Li, Y. Tang, J. Photochem. Photobiol. A Chem., 1995, 92, 99–103.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • D. A. Ivakhnenko
    • 1
    • 2
  • A. V. Shokurov
    • 1
  • G. V. Lyubimova
    • 3
  • N. L. Zaichenko
    • 3
  • V. V. Arslanov
    • 1
  • O. A. Raitman
    • 1
    Email author
  1. 1.A. N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Mendeleev University of Chemical Technology of RussiaMoscowRussian Federation
  3. 3.Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations