Perfluorinated porphyrazines
- 4 Downloads
Abstract
Nucleophilic substitution of fluorine atoms in the phenyl rings by alkoxy groups was performed in perfluorosubstituted zinc(II) octaphenylporphyrazine [ZnPAF40]. Up to 12 fluorine atoms are substituted in the reaction with sodium butoxide in boiling butanol leading to the formation of [ZnPAF40-n(OBu)n] (n = 6–12). Up to eight monosaccharide groups are introduced in the reaction with 1,2:3,4-di-O-isopropylidene-α-D-galactopyranose (Gal´) in toluene in the presence of sodium hydride leading to the formation of [ZnPaF(40-n)(Gal´)n] (n = 6–8). It was possible to obtain a water-soluble glycoconjugated zinc(II) porphyrazine [ZnPaF(40-n)(Gal)n] after removal of the isopropylidene protecting groups by treatment with trifluoroacetic acid. Substitution products are characterized by electron absorption spectroscopy, NMR spectroscopy, and mass spectrometry. Substituting the fluorine atoms with monosaccharide residues leads to an increase in the fluorescence quantum yield from ФF = 0.19 for [ZnPAF40] to 0.29 for [ZnPA(Gal´)nF40-n] (n = 6–8).
Key words
perfluorinated porphyrazines nucleophilic aromatic substitution galactose water soluble porphyrazinesPreview
Unable to display preview. Download preview PDF.
References
- 1.I. A. Yablokova (Lebedeva), S. S. Ivanova, Yu. A. Zhabanov, V. Novakova, P. A. Stuzhin, J. Fluorine Chem., 2018, 214, 86.CrossRefGoogle Scholar
- 2.S. G. DiMagno, J. C. Biffinger, H. Sun, in Fluorine in Heterocyc lic Chemistry, Ed. V. G. Nenajdenko, Vol. 1, 5-Membered Heterocycles and Macrocycles, Springer, Heidel berg, 2014, p. 589–620.Google Scholar
- 3.P. A. Stuzhin, in Fluorine in Heterocyclic Chemistry, Ed. V. G. Nenajdenko, Vol. 1, 5-Membered Heterocycles and Macrocycles, Springer, Heidelberg, 2014, p. 621–681.Google Scholar
- 4.T. Goslinski, J. Piskorz, Photochem. Photobiol., 2011, 304.Google Scholar
- 5.H. Brinkmann, C. Kelting, S. Makarov, O. Tsaryova, G. Schnurpfeil, D. Wöhrle, D. Schlettwein, Physica Status Solidi A Appl. Res., 2008, 205, 409.CrossRefGoogle Scholar
- 6.K. J. Balkus, Jr., M. Eissa, R. Levado, J. Am. Chem. Soc., 1995, 117, 10753.CrossRefGoogle Scholar
- 7.D. Dini, G. Y. Yang, M. Hanack, J. Chem. Phys., 2003, 119, 4857.CrossRefGoogle Scholar
- 8.J. I. T. Costa, A. C. Tome, M. G. Neves, J. A. S. Cavaleiro, J. Porphyrins Phthalocyanines, 2011, 15, 1116.CrossRefGoogle Scholar
- 9.P. Battioni, O. Brigaud, H. Desvaux, D. Mansuy, T. G. Traylor, Tetrahedron Lett., 1991, 32, 2893.CrossRefGoogle Scholar
- 10.M. Suzuki, S. Shimizu, J.-Y. Shin, A. Osuka, Tetrahedron Lett., 2003, 44, 4597.CrossRefGoogle Scholar
- 11.J. P. C. Tome, M. G. P. M. S. Neves, A. C. Tomé, J. A. S. Cavaleiro, A. F. Mendoncëa, I. N. Pegado, R. Duarte, M. L. Valdeira, Bioorg. Med. Chem., 2005, 13, 3878.CrossRefGoogle Scholar
- 12.J. Kralova, A. Synytsya, P. Pouckova, M. Koc, M. Dvorak, V. Kral, Photochem. Photobiol., 2006, 82, 433.CrossRefGoogle Scholar
- 13.J. Kralova, Z. Kejck, T. Brcza, P. Pouckova, A. Kral, P. Martasek, V. Kral, J. Med. Chem., 2010, 53, 128.CrossRefGoogle Scholar
- 14.T. Klein, T. Ziegler, Tetrahedron Lett., 2016, 57, 495.CrossRefGoogle Scholar
- 15.P. A. Stuzhin, M. Yu. Goryachev, S. S. Ivanova, A. Nazarova, I. Pimkov, O. I. Koifman, J. Porphyrins Phthalocyanines, 2013, 17, 905.CrossRefGoogle Scholar
- 16.P. A. Stuzhin, S. S. Ivanova, O. I. Koifman, O. A. Petrov, A. Nazarova, Inorg. Chem. Commun., 2014, 49, 72.CrossRefGoogle Scholar
- 17.K. P. R. Kartha, Tetrahedron Lett., 1986, 27, 3415.CrossRefGoogle Scholar
- 18.P. Zimcik, V. Novakova, K. Kopecky, M. Miletin, R. Z. Uslu Kobak, E. Svandrlikova, L. Váchová, K. Lang, Inorg. Chem., 2012, 51, 4215.CrossRefGoogle Scholar