Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 12, pp 2205–2211 | Cite as

Supramolecular organization of crown- and phosphoryl-containing magnesium and zinc phthalocyaninates in solutions of synthetic and natural surfactants

  • N. F. GoldshlegerEmail author
  • V. Yu. Gak
  • M. A. Lapshina
  • V. E. BaulinEmail author
  • A. A. Shiryaev
  • A. Yu. Tsivadze
Full Articles
  • 7 Downloads

Abstract

The behavior of crown- and phosphoryl-containing magnesium and zinc phthalocyaninates in solutions of synthetic and natural surfactants is studied. In a phosphate buffer (рН 7.4), zinc phthalocyaninate bearing oxy(pentyloxy)phosphoryl groups in peripheral substituents of the macrocycle is in aggregated state. According to absorption and fluorescence spectroscopy data, adding oppositely charged synthetic and natural surfactants leads to monomerization of this compound. The degree of monomerization of magnesium octa[(4´-benzo-15-crown-5)oxy]-phthalocyaninate in a microheterogeneous medium is affected by the concentration of sodium cholate and ionic strength. Fluorescence-active supramolecular gels based on sodium deoxycholate were prepared using phosphoryl-containing zinc phthalocyaninate.

Key words

phosphoryl-containing zinc phthalocyaninate magnesium octa[(4´-benzo-15-crown-5)oxy]phthalocyaninate bile acid salts cetyltrimethylammonium bromide cetyltriphenylphosphonium bromide absorption spectra fluorescence spectra small-angle X-ray scattering gel fluorescence microscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    K. Holmberg, B. Jönsson, B. Kronberg, B. Lindman, Surfactants and Polymers in Aqueous Solution, 2th ed., John Wiley and Sons Ltd, Chichester, England, 2003.Google Scholar
  2. 2.
    M. Miyata, K. Sada, Y. Miyake, Bile Acid/Salt Surfactant Systems, in Organized Assemblies in Chemical Analysis, Vol. 2, Ed. W. L. Hinze, JAI Press, Stamford, CT, 2000, p. 205.Google Scholar
  3. 3.
    H. Svobodova, V. Noponen, E. Kolehmainen, E. Sievanen, RSC Adv., 2012, 2, 4985.CrossRefGoogle Scholar
  4. 4.
    K. Matsuoka, Y. Kuranaga, Y. Moroi, Biochim. Biophys. Acta, 2002, 1580, 200.CrossRefGoogle Scholar
  5. 5.
    R. Ninomiya, K. Matsuoka, Y. Moroi, Biochim. Biophys. Acta, 2003, 1634, 116.CrossRefGoogle Scholar
  6. 6.
    N. F. Gol´dshleger, A. S. Lobach, V. Yu. Gak, I. P. Kalashnikova, V. E. Baulin, A. Yu. Tsivadze, Prot. Met. Phys. Chem. Surfaces (Engl. Transl.), 2014, 50, 599.CrossRefGoogle Scholar
  7. 7.
    N. F. Goldshleger, A. S. Lobach, N. N. Dremova, M. A. Lapshina, A. M. Kolesnikova, V. E. Baulin, A. Yu. Tsivadze, Macroheterocycles, 2017, 10, 531.CrossRefGoogle Scholar
  8. 8.
    N. F. Goldshleger, A. S. Lobach, V. E. Baulin, A. Yu. Tsivadze, Russ. Chem. Rev., 2017, 86, 269.CrossRefGoogle Scholar
  9. 9.
    I. P. Kalashnikova, D. V. Baulin, V. E. Baulin, A. Yu. Tsivadze, Russ. J. Gen. Chem., 2018, 88, 1853.CrossRefGoogle Scholar
  10. 10.
    C. J. Pedersen, J. Am. Chem. Soc., 1967, 89, 2495.CrossRefGoogle Scholar
  11. 11.
    J.-M. Lehn, Pure Appl. Chem., 1978, 50, 871.CrossRefGoogle Scholar
  12. 12.
    M. Nishio, Tetrahedron, 2005, 61, 6923.CrossRefGoogle Scholar
  13. 13.
    J. Janczak, Polyhedron, 2010, 29, 941.CrossRefGoogle Scholar
  14. 14.
    B. Mukherjee, A. A. Dar, P. A. Bhat, S. P. Moulik, A. R. Das, RSC Adv., 2016, 6, 1769.CrossRefGoogle Scholar
  15. 15.
    M. H. Najar, O. A. Chat, A. A. Dar, G. M. Rather, J. Surfact. Deterg., 2013, 16, 967.CrossRefGoogle Scholar
  16. 16.
    V. E. Baulin, G. S. Tsebrikova, D. V. Baulin, Y. F. Al Ansary, Biomed. Chem.: Res. Methods, 2018, 1, No. 3, e00043; DOI: 10.18097/BMCRM00043.Google Scholar
  17. 17.
    S. K. Verma, K. K. Ghosh, J. Surfact. Deterg, 2011, 14, 347.aaaaaCrossRefGoogle Scholar
  18. 18.
    J. Santhanalakshmi, G. Santhanalakshmi, V. K. Aswal, P. S. Goyal, Proc. Ind. Acad. Sci. (Chem. Sci.), 2001, 113, 55.aaaaaaCrossRefGoogle Scholar
  19. 19.
    N. F. Goldshleger, A. V. Chernyak, A. S. Lobach, I. P. Kalashnikova, V. E. Baulin, A. Yu. Tsivadze, Prot. Met. Phys. Chem. Surfaces (Engl. Transl.), 2015, 51, 212.CrossRefGoogle Scholar
  20. 20.
    J. Zhang, H. Wang, X Li, S. Song, A. Song, J. Hao, J. Phys. Chem. B, 2016, 120, 6812.CrossRefGoogle Scholar
  21. 21.
    M. Stojancevic, N. Pavlovic, S. Golocorbin-Kon, M. Mikov, Front. Life Sci., 2013, 7, 112.CrossRefGoogle Scholar
  22. 22.
    N. A. Malik, Appl. Biochem. Biotechnol., 2016, 179, 179.CrossRefGoogle Scholar
  23. 23.
    A. Jover, F. Meijide, E. R. Núñez, J. V. Tato, Langmuir, 1996, 12, 1789.CrossRefGoogle Scholar
  24. 24.
    N. F. Goldshleger, A. V. Chernyak, I. P. Kalashnikova, V. E. Baulin, A. Yu. Tsivadze, Russ. J. Gen. Chem., 2012, 82, 927.CrossRefGoogle Scholar
  25. 25.
    D. Madenci, S. Egelhaaf, Curr. Opinion Colloid Interface Sci., 2010, 15, 109.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • N. F. Goldshleger
    • 1
    Email author
  • V. Yu. Gak
    • 1
  • M. A. Lapshina
    • 1
    • 2
  • V. E. Baulin
    • 3
    • 4
    Email author
  • A. A. Shiryaev
    • 3
  • A. Yu. Tsivadze
    • 3
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovkaRussian Federation
  2. 2.Moscow Region State UniversityMoscowRussian Federation
  3. 3.A. N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscowRussian Federation
  4. 4.Institute of Physiologically Active CompoundsRussian Academy of SciencesChernogolovkaRussian Federation

Personalised recommendations