Reactivity of an aluminum hydride complex with a redox-active diimine ligand
- 6 Downloads
Abstract
The reaction of the hydride [(dpp-bian)Al(H)Cl] (1) containing the 1,2-bis[(2,6-diisopropylphenyl) imino]acenaphthene (dpp-bian) radical anion with MeLi affords the compound [(dpp-bian)Al(H)Me] (2). The reaction of complex 1 with two equivalents of PhC≡CNa involves the replacement of chlorine along with oxidative substitution of hydrogen accompanied by the reduction of dpp-bian to the dianion to form the compound [(dpp-bian)Al(C≡CPh)2Na(Et2O)2] ({sn3}). This reaction gives the complex [{dpp-bian(H)}Al(C≡CPh)3Na(Et2O)2] (4) as the second product, which is apparently generated in the reaction of compound 3 with PhC≡CH. The reaction of compound 1 with Cp*Na (Cp* is pentamethylcyclopentadiene) in dimethoxyethane is also accompanied by the reduction of redox-active dpp-bian to the dianion, giving the complex [(dpp-bian)Al(H)Cl][Na(DME)3] (5). Diamagnetic derivatives 3–5 were characterized by 1H NMR spectroscopy; paramagnetic compound 2, by EPR spectroscopy. The molecular structures of compounds 2–5 were determined by X-ray diffraction.
Key words
aluminum hydrides redox-active ligands diimine ligands molecular structurePreview
Unable to display preview. Download preview PDF.
References
- 1.K. Ziegler, E. Holzkamp, H. Breiland, H. Martin, Angew. Chem., 2003, 67, 541.CrossRefGoogle Scholar
- 2.G. J. Natta, Polym. Sci., 1955, 16, 143.CrossRefGoogle Scholar
- 3.V. Jancik, Y. Peng, H. W. Roesky, J. Li, D. Neculai, A. M. Neculai, R. Herbst-Irmer, J. Am. Chem. Soc., 2003, 125, 1452.CrossRefGoogle Scholar
- 4.Z. Yang, X. Ma, V. Jancik, Z. Zhang, H. W. Roesky, J. Magull, M. Noltemeyer, H.-G. Schmidt, R. Cea-Olivares, R. A. Toscano, Inorg. Chem., 2006, 45, 3312.CrossRefGoogle Scholar
- 5.Z. Yang, X. Ma, R. B. Oswald, H. W. Roesky, C. Cui, H.-G. Schmidt, M. Noltemeyer, Angew. Chem., 2006, 118, 2335.CrossRefGoogle Scholar
- 6.Z. Yang, X. Ma, H. W. Roesky, Y. Yang, J. Magull, A. Ringe, Inorg. Chem., 2007, 46, 7903.Google Scholar
- 7.Y. Peng, G. Bai, H. Fan, D. Vidovic, H. W. Roesky, J. Magull, Inorg. Chem., 2004, 43, 1217.CrossRefGoogle Scholar
- 8.S. Yow, S. J. Gates, A. J. P. White, M. R. Crimmin, Angew. Chem, Int. Ed., 2012, 51, 12559.CrossRefGoogle Scholar
- 9.C. Cui, H. W. Roesky, H. Hao, H.-G. Schmidt, M. Noltemeyer, Angew. Chem., Int. Ed., 2000, 39, 1815.CrossRefGoogle Scholar
- 10.N. Kuhn, S. Fuchs, M. Steimann, Eur. J. Inorg. Chem., 2001, 359.Google Scholar
- 11.L. Bourget-Merle, M. F. Lappert, J. R. Severn, Chem. Rev., 2002, 102, 3031.CrossRefGoogle Scholar
- 12.V. Jancik, Y. Peng, H. W. Roesky, J. Li, D. Neculai, A. M. Neculai, R. Herbst-Irmer, J. Am. Chem. Soc., 2003, 125, 1452.CrossRefGoogle Scholar
- 13.V. Jancik, M. M. M. Cabrera, H. W. Roesky, R. Herbst-Irmer, D. Neculai, A. M. Neculai, M. Noltemeyer, H.-G. Schmidt, Eur. J. Inorg. Chem., 2004, 3508.Google Scholar
- 14.S. S. Kumar, S. Singh, F. Hongjun, H. W. Roesky, D. Vidovic, J. Magull, Organometallics, 2004, 23, 6327.CrossRefGoogle Scholar
- 15.H. Zhu, Z. Yang, J. Magull, H. W. Roesky, H.-G. Schmidt, M. Noltemeyer, Organometallics, 2005, 24, 6420.CrossRefGoogle Scholar
- 16.Z. Yang, X. Ma, R. B. Oswald, H. W. Roesky, M. Noltemeyer, J. Am. Chem. Soc., 2006, 128, 12406.CrossRefGoogle Scholar
- 17.S. González-Gallardo, V. Jancik, R. Cea-Olivares, R. A. Toscano, M. Moya-Cabrera, Angew. Chem., Int. Ed., 2007, 46, 2895.CrossRefGoogle Scholar
- 18.W. Uhl, B. Jana, Chem. Eur. J., 2008, 14, 3067.CrossRefGoogle Scholar
- 19.F. Rascón-Cruz, R. Huerta-Lavorie, V. Jancik, R. A. Toscano, R. Cea-Olivares, Dalton Trans., 2009, 1195.Google Scholar
- 20.W. Uhl, B. Jana, J. Organomet. Chem., 2009, 694, 1101.CrossRefGoogle Scholar
- 21.X. Ma, Z. Yang, X. Wang, H. W. Roesky, F. Wu, H. Zhu, Inorg. Chem., 2011, 50, 2010.CrossRefGoogle Scholar
- 22.S. Harder, J. Spielmann, Chem. Commun., 2011, 47, 11945.CrossRefGoogle Scholar
- 23.P. Hao, Z. Yang, X. Ma, X. Wang, Z. Liu, H. W. Roesky, K. Sun, J. Li, M. Zhong, Dalton Trans., 2012, 41, 13520.CrossRefGoogle Scholar
- 24.Z. Yang, P. Hao, Z. Liu, X. Ma, H. W. Roesky, K. Sun, J. Li, Organometallics., 2012, 31, 6500.CrossRefGoogle Scholar
- 25.D. Franz, S. Inoue, Chem. Eur. J., 2014, 20, 10645.CrossRefGoogle Scholar
- 26.Z. Yang, M. Zhong, X. Ma, S. De, C. Anusha, P. Parameswaran, H. W. Roesky, Angew. Chem., Int. Ed., 2015, 54, 10225.CrossRefGoogle Scholar
- 27.A. V. Korolev, E. Ihara, I. A. Guzei, V. G. Young, Jr., R. F. Jordan, J. Am. Chem. Soc., 2001, 123, 8291.CrossRefGoogle Scholar
- 28.S. Dagorne, D. A. Atwood, Chem. Rev., 2008, 108, 4039.CrossRefGoogle Scholar
- 29.I. L. Fedushkin, A. S. Nikipelov, K. A. Lyssenko, J. Am. Chem. Soc., 2010, 132, 7874.CrossRefGoogle Scholar
- 30.I. L. Fedushkin, M. V. Moskalev, A. N. Lukoyanov, A. N. Tishkina, E. V. Baranov, G. A. Abakumov, Chem. Eur. J., 2012, 18, 11264.CrossRefGoogle Scholar
- 31.I. L. Fedushkin, M. V. Moskalev, E. V. Baranov, G. A. Abakumov, J. Organomet. Chem., 2013, 747, 235.CrossRefGoogle Scholar
- 32.I. L. Fedushkin, A. A. Skatova, V. A. Dodonov, V. A. Chudakova, N. L. Bazyakina, A. V. Piskunov, S. V. Demeshko, G. K. Fukin, Inorg. Chem., 2014, 53, 5159.CrossRefGoogle Scholar
- 33.I. L. Fedushkin, A. S. Nikipelov, A. A. Skatova, O. V. Maslova, A. N. Lukoyanov, G. K. Fukin, A. V. Cherkasov, Eur. J. Inorg. Chem., 2009, 3742.Google Scholar
- 34.I. L. Fedushkin, O. V. Kazarina, A. N. Lukoyanov, A. A. Skatova, N. L. Bazyakina, A. V. Cherkasov, E. Palamidis, Organometallics, 2015, 34, 1498.CrossRefGoogle Scholar
- 35.M. V. Moskalev, A. N. Lukoyanov, E. V. Baranov, I. L. Fedushkin, Dalton Trans., 2016, 45, 15872.CrossRefGoogle Scholar
- 36.V. A. Dodonov, A. A. Skatova, A. V. Cherkasov, I. L. Fedushkin, Russ. Chem. Bull., 2016, 65, 1171.CrossRefGoogle Scholar
- 37.I. L. Fedushkin, V. A. Dodonov, A. A. Skatova, V. G. Sokolov, A. V. Piskunov, G. K. Fukin, Chem. Eur. J., 2018, 24, 1877–1889.CrossRefGoogle Scholar
- 38.I. L. Fedushkin, A. S. Nikipelov, A. G. Morozov, A. A. Skatova, A. V. Cherkasov, G. A. Abakumov, Chem. Eur. J., 2012, 18, 255.CrossRefGoogle Scholar
- 39.I. L. Fedushkin, M. V. Moskalev, A. N. Lukoyanov, A. N. Tishkina, E. V. Baranov, G. A. Abakumov, Chem. Eur. J. 2012, 18, 11264.CrossRefGoogle Scholar
- 40.I. L. Fedushkin, V. G. Sokolov, A. V. Piskunov, V. M. Makarov, E. V. Baranov, G. A. Abakumov, Chem. Commun., 2014, 50, 10108–10111.CrossRefGoogle Scholar
- 41.I. L. Fedushkin, V. G. Sokolov, V. M. Makarov, A. V. Cherkasov, G. A. Abakumov, Russ. Chem. Bull., 2016, 65, 1495.CrossRefGoogle Scholar
- 42.V. G. Sokolov, T. S. Koptseva, M. V. Moskalev, A. V. Piskunov, M. A. Samsonov, I. L. Fedushkin, Russ. Chem. Bull., 2017, 66, 1569.CrossRefGoogle Scholar
- 43.R. Duchateau, A. Meetsma, J. H. Teuben, Chem. Commun., 1996, 223.Google Scholar
- 44.C. Chu, Y. Yang, H. Zhu, Sci. Chi. Chem., 2010, 53, 1970.CrossRefGoogle Scholar
- 45.V. G. Sokolov, T. S. Koptseva, M. V. Moskalev, N. L. Bazyakina, A. V. Piskunov, A. V. Cherkasov, I. L. Fedushkin, Inorg. Chem., 2017, 56, 13401.CrossRefGoogle Scholar
- 46.H. Schumann, M. Hummert, A. N. Lukoyanov, I. L. Fedushkin, Organometallics, 2005, 24, 3891.CrossRefGoogle Scholar
- 47.A. N. Lukoyanov, I. L. Fedushkin, H. Schumann, M. Hummert, Z. Anorg. Allg. Chem., 2006, 632, 1471.CrossRefGoogle Scholar
- 48.T. W. Myers, L. A. Berben, J. Am. Chem. Soc., 2013, 135, 9988.CrossRefGoogle Scholar
- 49.Y. Zhao, Y. Liu, B. Wu, X-J. Yang, Dalton Trans., 2015, 44, 13671.CrossRefGoogle Scholar
- 50.S. Stoll, A. Schweiger, J. Magnetic Resonance, 2006, 178, 42.CrossRefGoogle Scholar
- 51.CrysAlisPro, Empirical Absorption Correction Using Spherical Harmonics, Implemented in SCALE3 ABSPACK Scaling Algorithm, Rigaku Oxford Diffraction, UK, 2015.Google Scholar
- 52.BrukerSAINT Data Reduction and Correction Program v. 8.38A, Bruker AXS, Madison, Wisconsin, USA, 2017.Google Scholar
- 53.G. M. Sheldrick, SHELXL and SHELXT, Structure Solution and Refinement Software, 2015.Google Scholar
- 54.G. M. Sheldrick, SADABS v.2016/2, Bruker/Siemens Area Detector Absorption Correction Program, Bruker AXS, Madison, Wisconsin, USA, 2016.Google Scholar