Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 11, pp 2065–2072 | Cite as

Polynitromethyl derivatives of furazano[3,4-e]di([1,2,4]triazolo)-[4,3-a:3′,4′-c]pyrazine as components of solid composite propellants

  • D. B. Lempert
  • A. B. Sheremetev
Full Articles
  • 13 Downloads

Abstract

The energetic potential of solid composite propellants (SCP) with furazano[3,4-e]di([1,2,4]- triazolo)[4,3-a:3′,4′-c]pyrazine including trinitromethyl (C(NO2)3), fluorodinitromethyl (CF(NO2)2), and (difluoroamino)dinitromethyl (C(NF2)(NO2)2) groups was estimated based on thermochemical calculations. It was shown that C(NO2)3 and C(NF2)(NO2)2 derivatives can constitute the basis of metal-free compositions of SCP with a specific impulse from 251 to 263 s, i.e., comparable or superior in efficiency to HMX-based propellants.

Key words

trinitromethyl group fluorodinitromethyl group difluoroamines rocket propellants specific impulse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    E. Yu. Orlova, N. A. Orlova, V. F. Zhulin, V. L. Zbarsky, G. M. Shutova, L. I. Vitkovskaya, Oktogen–termostoykoe vzryvchatoe veshchestvo [Oktogen as Heat-Resistant Explosive], Nedra, Moscow, 1975, 128 pp. (in Russian).Google Scholar
  2. 2.
    Energeticheskie kondensirovannye sistemy [Energy Condensed Systems], ed. B. P. Zhukov, Yanus-K, Moscow, 2000, 334–335 (in Russian).Google Scholar
  3. 3.
    N. Kubota, Propellants and Explosives, Wiley-VCH, Weinheim, 2002.Google Scholar
  4. 4.
    L. T. DeLuca, T. Shimada, V. P. Sinditskii, M. Calabro, Chemical Rocket Propulsion–A Comprehensive Survey of Energetic Materials, Springer, Maharashtra, 2017.Google Scholar
  5. 5.
    H. Singh, H. Shekhar, Solid Rocket Propellants, Royal Society of Chemistry, Cambridge, 2017.Google Scholar
  6. 6.
    A. S. Smirnov, S. P. Smirnov, T. S. Pivina, D. B. Lempert, L. K. Maslova, Russ. Chem. Bull., 2016, 65, 2315.CrossRefGoogle Scholar
  7. 7.
    R. Tsyshevsky, P. Pagoria, A. S. Smirnov, M. M. Kuklja, J. Phys. Chem. C, 2017, 121, 23865.CrossRefGoogle Scholar
  8. 8.
    A. B. Sheremetev, V. L. Korolev, A. A. Potemkin, N. S. Aleksandrova, N. V. Palysaeva, T. H. Hoang, V. P. Sinditskii, K. Yu. Suponitsky, Asian J. Org. Chem., 2016, 5, 1388.CrossRefGoogle Scholar
  9. 9.
    V. P. Sinditsky, Ch. Kh. Khoang, A. B. Sheremetev, Goreniye i vzryv [Combustion and Explosion], 2017, 10, No. 4, 71 (in Russian).Google Scholar
  10. 10.
    D. B. Lempert, E. M. Dorofeenko, Comb. Explos. Shock Waves, 2014, 50, 447.CrossRefGoogle Scholar
  11. 11.
    A. V. Shastin, D. B. Lempert, Russ. J. Phys. Chem. B, 2014, 8, 716.CrossRefGoogle Scholar
  12. 12.
    D. B. Lempert, E. M. Dorofeenko, Cent. Eur. J. Energ. Mater., 2015, 12, 35.Google Scholar
  13. 13.
    D. B. Lempert, E. M. Dorofeenko, S. I. Soglasnova, A. A. Matveev, Russ. J. Phys. Chem. B, 2016, 10, 628.CrossRefGoogle Scholar
  14. 14.
    A. A. Gidaspov, V. A. Zalomlenkov, V. V. Bakharev, V. E. Parfenov, E. V. Yurtaev, M. I. Struchkova, N. V. Palysaeva, K. Yu. Suponitsky, D. B. Lempert, A. B. Sheremetev, RSC Adv., 2016, 6, 34921.CrossRefGoogle Scholar
  15. 15.
    D. B. Lempert, E. M. Dorofeenko, Yu. Shu, Russ. J. Phys. Chem. B, 2016, 10, 483.CrossRefGoogle Scholar
  16. 16.
    D. B. Lempert, A. B. Sheremetev, Chem. Heterocycl. Compd., 2016, 52, 1070.CrossRefGoogle Scholar
  17. 17.
    S. M. Aldoshin, D. B. Lempert, T. K. Goncharov, A. I. Kazakov, S. I. Soglasnova, E. M. Dorofeenko, N. A. Plishkin, Russ. Chem. Bull., 2016, 65, 2018.CrossRefGoogle Scholar
  18. 18.
    D. B. Lempert, G. N. Nechiporenko, S. I. Soglasnova, E. M. Dorofeenko, Russ. J. Phys. Chem. B, 2017, 11, 443.CrossRefGoogle Scholar
  19. 19.
    L. L. Fershtat, I. V. Ovchinnikov, M. A. Epishina, A. A. Roma nova, D. B. Lempert, N. V. Muravyev, N. N. Makhova, ChemPlusChem, 2017, 82, 1315.CrossRefGoogle Scholar
  20. 20.
    I. L. Dalinger, K. Yu. Suponitsky, T. K. Shkineva, D. B. Lempert, A. B. Sheremetev, J. Mater. Chem., A, 2018, 6, 14780.CrossRefGoogle Scholar
  21. 21.
    D. B. Lempert, A. I. Kazakov, S. I. Soglasnova, I. L. Dalinger, A. B. Sheremetev, Russ. Chem. Bull., 2018, 67, 1580.CrossRefGoogle Scholar
  22. 22.
    G. B. Manelis, G. M. Nazin, Z. I. Rubtsov, V. A. Strunin, Thermal Decomposition and Combustion of Explosives and Propellants, Taylor & Francis, New York, 2003.Google Scholar
  23. 23.
    L. V. Kustova, Yu. I. Rubtsov, E. P. Kirpichev, L. T. Eremenko, R. G. Gafurov, A. G. Korepin, Russ. J. Phys. Chem., 1976, 50, 1150.Google Scholar
  24. 24.
    L. V. Kustova, E. P. Kirpichev, Y. I. Rubtsov, V. V. Avdonin, A. G. Korepin, L. T. Eremenko, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1981, 30, 1830.CrossRefGoogle Scholar
  25. 25.
    V. V. Avdonin, E. P. Kirpichev, Yu. I. Rubtsov, M. A. Fadeev, G. V. Oreshko, L. T. Eremenko, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1991, 40, 2189.CrossRefGoogle Scholar
  26. 26.
    V. N. Grebennikov, G. B. Manelis, G. M. Nazin, A. V. Fokin, Russ. Chem. Bull., 1994, 43, 336.CrossRefGoogle Scholar
  27. 27.
    V. N. Grebennikov, G. B. Manelis, G. M. Nazin, Russ. Chem. Bull., 1995, 44, 628.CrossRefGoogle Scholar
  28. 28.
    V. N. Grebennikov, G. B. Manelis, G. M. Nazin, Proc. 27th Int. Annual Conf. of ICT (Energetic Materials), Karlsruhe, 1996, 8.1–8.8.Google Scholar
  29. 29.
    G. B. Manelis, G. M. Nazin, V. G. Prokudin, Cent. Eur. J. Energ. Mater., 2009, 6, 31.Google Scholar
  30. 30.
    G. B. Manelis, G. M. Nazin, V. G. Prokudin, Russ. Chem. Bull., 2011, 60, 1440.CrossRefGoogle Scholar
  31. 31.
    B. V. Litvinov, A. A. Fainzilberg, V. I. Pepekin, S. P. Smirnov, B. G. Loboiko, S. A. Shevelev, G. M. Nazin, Dokl. Akad. Nauk, 1994, 336, 86.Google Scholar
  32. 32.
    V. I. Pepekin, Chem. Phys. Rep., 1994, 13, 42.Google Scholar
  33. 33.
    A. N. Kizin, P. L. Dvorkin, G. L. Ryzhova, Yu. A. Lebedev, Bull. Acad. Sci. USSR, Div. Chem. Sci., 1986, 35, 343.CrossRefGoogle Scholar
  34. 34.
    A. Salmon, D. Dalmazzone, J. Phys. Chem. Ref. Data, 2006, 35, 1443.CrossRefGoogle Scholar
  35. 35.
    A. Salmon, D. Dalmazzone, J. Phys. Chem. Ref. Data, 2007, 36, 19.CrossRefGoogle Scholar
  36. 36.
    E. V. Sagadeev, A. A. Gimadeev, V. P. Barabanov, Theor. Found. Chem. Eng., 2009, 43, 108.CrossRefGoogle Scholar
  37. 37.
    M. A. C. Härtel, T. M. Klapötke, V. N. Emel’yanenko, S. P. Verevkin, Thermochim. Acta, 2017, 656, 151.CrossRefGoogle Scholar
  38. 38.
    G. Bikelyte, M. A. C. Härtel, J. Stiestorfer, T. M. Klapotke, A. A. Pimerzin, S. P. Verevkin, J. Chem. Thermodin., 2017, 111, 271.CrossRefGoogle Scholar
  39. 39.
    I. L. Dalinger, A. Kh. Shakhnes, K. A. Monogarov, K. Yu. Suponitsky, A. B. Sheremetev, Mendeleev Commun., 2015, 25, 429.CrossRefGoogle Scholar
  40. 40.
    T. Fei, Y. Du, S. Pang, RSC Adv., 2018, 8, 10215.CrossRefGoogle Scholar
  41. 41.
    D. Lempert, G. Nechiporenko, G. Manelis, Cent. Eur. J. Energ. Mater., 2006, 3, No. 4, 73.Google Scholar
  42. 42.
    B. G. Trusov, Proc. XIV Int. Symp. on Chemical Thermodynamics, St.-Petersburg, 2002, p. 483.Google Scholar
  43. 43.
    G. Ya. Pavlovets, V. I. Tsutsuran, Fiziko-khimicheskie svoystva porokhov i raketnykh topliv [Physicochemical Properties of Powders and Rocket Propellants], Izd-vo Ministerstva oborony RF, Moscow, 2009, p. 408 (in Russian).Google Scholar
  44. 44.
    G. N. Nechiporenko, D. B. Lempert, Chem. Phys. Rep., 1998, 17, 1927.Google Scholar
  45. 45.
    D. B. Lempert, G. N. Nechiporenko, S. I. Soglasnova, Proc. of 11th Int. Seminar "New Trends in Research of Energetic Materials" (Pardubice, 9–11 April, 2008), Vol. II, p. 634.Google Scholar
  46. 46.
    A. N. Sterletskii, A. Yu. Dolgoborodov, I. V. Kolbanev, M. N. Makhov, S. F. Lomaeva, A. B. Borunova, V. E. Fortov, Colloid J., 2009, 71, 852.CrossRefGoogle Scholar
  47. 47.
    E.-C. Koch, Metal-Fluorocarbon Based Energetic Materials, John Wiley & Sons, 2012.CrossRefGoogle Scholar
  48. 48.
    H. A. Miller, B. S. Kusel, S. T. Danielson, J. W. Neat, E. K. Avjian, S. N. Pierson, S. M. Budy, D. W. Ball, S. T. Iacono, S. C. Kettwich, J. Mater. Chem. A, 2013, 1, 7050.CrossRefGoogle Scholar
  49. 49.
    A. Yu. Dolgoborodov, Comb. Explos. Shock Wav., 2015, 51, 86.CrossRefGoogle Scholar
  50. 50.
    D. S. Sundaram, V. Yang, V. E. Zarko, Comb. Explos. Shock Wav., 2015, 51, 173.CrossRefGoogle Scholar
  51. 51.
    L. H. Blair, A. Colakel, R. M. Vrcelj, I. Sinclair, S. J. Coles, Chem. Commun., 2015, 51, 12185.CrossRefGoogle Scholar
  52. 52.
    J. Zhou, Y. He, Y. He, C. T. Wang, Propellants Explos. Pyrotech., 2017, 42, 603.CrossRefGoogle Scholar
  53. 53.
    F. P. Madyakin, Komponenty i produkty sgoraniya pirotekhnicheskikh sostavov [Components and Combustion Products of Pyrotechnic Compositions], Vol. 1, KGTU, Kazan, 2006 (in Russian).Google Scholar
  54. 54.
    N. G. Rogov, M. A. Ishchenko, Smesevye raketnye tverdye topliva: komponenty, trebovaniya, svoystva [Mixed Solid Rocket Propellants: Components, Requirements, Properties], Izd-vo SPbGTI (TU), St.-Petersburg, 2005, 195 pp. (in Russian).Google Scholar
  55. 55.
    A. V. Kostochko, B. M. Kazban, Porokha, raketnye tverdye topliva i ikh svoystva [Powders, Solid Rocket Propellants and Their Properties], INFRA-M, Moscow, 2015, 400 pp. (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations