Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 11, pp 2025–2034 | Cite as

Novel diphenylsulfimide antioxidants containing 2,6-di-tert-butylphenol moieties

  • E. R. Milaeva
  • D. B. Shpakovsky
  • I. A. Maklakova
  • K. A. Rufanov
  • M. E. Neganova
  • E. F. Shevtsova
  • A. V. Churakov
  • V. A. Babkova
  • D. A. Babkov
  • V. A. Kosolapov
  • A. A. Spasov
Full Articles
  • 6 Downloads

Abstract

New diphenylsulfimide derivatives containing substituents with the 2,6-di-tert-butylphenol moiety at the nitrogen atom were synthesized. Their molecular structures were established by X-ray diffraction. Antioxidant activity was experimentally evaluated by spectrophotometry based on hydrogen transfer to the stable radicals, namely, 2,2-diphenyl-1-picrylhydrazyl and the 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) radical cation (ABTS·+), and using in vitro lipid peroxidation in rat brain and liver homogenates. The presence of phenol and diphenylsulfimide moieties in one molecule leads to a significant enhancement of antioxidant activity. The new compounds exhibit moderate inhibitory activity against enzymes involved in carbohydrate and lipid metabolism. The evaluation of antiglycation activity showed that the new sulfimides taken at a concentration of 100 μmol L–1 have activity comparable with that of aminoguanidine.

Key words

sulfimides 2,6-di-tert-butylphenol antioxidant activity lipid peroxidation antiglycation activity X-ray diffraction 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    N. Furukawa, S. Oae, Ind. Eng. Chem. Prod. Res. Dev., 1981, 20, 260–270.CrossRefGoogle Scholar
  2. 2.
    T. L. Gilchrist, J. C. Moody, Chem. Rev., 1977, 77, 409–435.CrossRefGoogle Scholar
  3. 3.
    I. V. Koval’, Russ. Chem. Rev., 1990, 59, 819–831.CrossRefGoogle Scholar
  4. 4.
    T. Fujie, T. Iseki, H. Iso, Y. Imai, E. Tsukurimichi, T. Yoshimura, Synthesis, 2008, No. 10, 1565–1569.Google Scholar
  5. 5.
    M. Abou-Gharbia, D. M. Ketcha; D. E. Zacharias, D. Swern, J. Org. Chem., 1985, 50, 2224–2228.CrossRefGoogle Scholar
  6. 6.
    N. Furukawa, M. Fukumura, T. Nishio, S. Oae, J. Chem. Soc., Perkin Trans. 1, 1977, 96–98.Google Scholar
  7. 7.
    N. Furukawa, T. Nishio, M. Fukumura, S. Oae, Chem. Lett., 1978, 209–210.Google Scholar
  8. 8.
    S. Gumus, S. Hamamci, V. T. Yilmaz, C. Kazak, J. Molec. Struct., 2007, 828, 181–187.CrossRefGoogle Scholar
  9. 9.
    S. H. Dale, M. R. J. Elsegood, K. E. Holmes, P. F. Kelly, Acta Crystallogr., Sec. C: Cryst. Struct. Comm., 2005, C61, m34-m39.Google Scholar
  10. 10.
    P. F. Kelly, S.-M. Man, A. M. Z. Slawin, K. W. Waring, Polyhedron, 1999, 18, 3173–3179.CrossRefGoogle Scholar
  11. 11.
    P. F. Kelly, A. C. Macklin, A. M. Z. Slawin, K. W. Waring, Polyhedron, 2000, 19, 2077–2081.CrossRefGoogle Scholar
  12. 12.
    S. Zhou, Z. Li, J. Phys. Chem. Biophys., 2015, 5, 174.Google Scholar
  13. 13.
    C. M. M. Hendriks, P. Nürnberg, C. Bolm, Synthesis, 2015, 47, 1190–1194.CrossRefGoogle Scholar
  14. 14.
    U. Lü cking, Angew. Chem., Int. Ed., 2013, 52, 2–12.Google Scholar
  15. 15.
    E. T. Denisov, Handbook of Antioxidants: Bond Dissociation Energies, Rate Constants, Activation Energies, and Enthalpies of Reactions, CRC Press, Boca Raton, New York, 1995, 174 pp.Google Scholar
  16. 16.
    E. Т. Denisov, I. B. Afanas’ev, Oxidation and Antioxidants in Organic Chemistry and Biology. Boca Raton: Taylor & Francis, 2005. 981 p.Google Scholar
  17. 17.
    E. R. Milaeva, Curr. Top. Med. Chem., 2011, 11, 2703–2713.CrossRefGoogle Scholar
  18. 18.
    E. R. Milaeva, D. B. Shpakovsky, Yu. A. Gracheva, S. I. Orlova, V. V. Maduar, B. N. Tarasevich, N. N. Meleshonkova, L. G. Dubova, E. F. Shevtsova, Dalton Trans., 2013, 42, 6817–6828.CrossRefGoogle Scholar
  19. 19.
    O. V. Mikhalev, D. B. Shpakovsky, Yu. A. Gracheva, T. A. Antonenko, D. V. Albov, L. A. Aslanov, E. R. Milaeva, Russ. Chem. Bull., 2018, 67, 712–720.CrossRefGoogle Scholar
  20. 20.
    I. V. Zhigacheva, M. M. Rasylov, Russ. Chem. Bull., 2018, 67, 721–725].CrossRefGoogle Scholar
  21. 21.
    E. R. Milaeva, D. B. Shpakovsky, Yu. A. Gracheva, T. A. Antonenko, D. I. Osolodkin, V. A. Palyulin, P. N. Shevtsov, M. E. Neganova, D. V. Vinogradova, E. F. Shevtsova, J. Organomet. Chem., 2015, 782, 96–102.CrossRefGoogle Scholar
  22. 22.
    T. A. Antonenko, D. B. Shpakovsky, M. A. Vorobyov, Yu. A. Gracheva, E. V. Kharitonashvili, L. G. Dubova, E. F. Shevtsova, V. A. Tafeenko, L. A. Aslanov, A. G. Iksanova, Yu. G. Shtyrlin, E. R. Milaeva, Appl. Organomet. Chem., 2018, 32, e4381.Google Scholar
  23. 23.
    A. Kucsman, I. Kapovits, M. Balla, Tetrahedron, 1962, 18, 75–78.CrossRefGoogle Scholar
  24. 24.
    Т. Yoshimura, Т. Omata, N. Furukawa, S. Oae, J. Org. Chem., 1976, 41, 1728–1733.CrossRefGoogle Scholar
  25. 25.
    F. H. Allen, Acta. Crystallogr. B., 2002, B58, 380–388.Google Scholar
  26. 26.
    W. Brand-Williams, M. Cuvelier, C. Berset, Lebensm.-Wiss.-Technol., 1995, 28, 25–30.CrossRefGoogle Scholar
  27. 27.
    V. Bondet, W. Brand-Williams, C. Berset, LWT-Food Sci. Tech., 1997, 30, 609–615.CrossRefGoogle Scholar
  28. 28.
    A. Cano, O. Alcaraz, M. Acosta, M. Arnao, Redox Rep., 2002, 7, 103–109.CrossRefGoogle Scholar
  29. 29.
    R. Re, N. Pellegrini, A. Proteggente, A. Pannala, M. Yang, C. Rice-Evans, Free Radic. Biol. Med., 1999, 26, 1231–1237.CrossRefGoogle Scholar
  30. 30.
    A. Andreou, I. Feussner, Phytochem., 2009, 70, 1504–1510.CrossRefGoogle Scholar
  31. 31.
    E. R. Milaeva, D. B. Shpakovsky, N. N. Meleshonkova, S. I. Orlova, E. F. Shevtsova, L. G. Dubova, E. G. Kireeva, V. A. Kosolapov, V. A. Kusnetsova, D. V. Sorotsky, O. A. Solov’eva, A. A. Spasov, Russ. Chem. Bull., 2015, 64, 2195–2202.CrossRefGoogle Scholar
  32. 32.
    E. P. Ivakhnenko, A. I. Shif, A. I. Prokif’ev, L. P. Olekhnovich, V. I. Minkin, J. Org. Chem. USSR, 1989, 25, 357–367.Google Scholar
  33. 33.
    T. H. Coffield, A. H. Filbey, G. G. Ecke, A. J. Kolka, J. Am. Chem. Soc., 1957, 79, 5019–5023.CrossRefGoogle Scholar
  34. 34.
    P. Wyatt, A. Hudson, J. Charmant, A. G. Orpen, H. Phetmung, Org. Biomol. Chem., 2006, 4, 2218–2232.CrossRefGoogle Scholar
  35. 35.
    G. M. Sheldrick, SADABS. Program for Scaling and Correction of Area Detector Data, University of Göttingen, Germany, 1997.Google Scholar
  36. 36.
    G. M. Sheldrick, Acta. Crystallogr. A, 2008, A64, 112–122.Google Scholar
  37. 37.
    C. A. Rice-Evans, N. J. Miller, Methods Enzymol., 1994, 234, 279–293.CrossRefGoogle Scholar
  38. 38.
    M. N. Xanthopoulou, S. K. Hadjikakou, N. Hadjiliadis, E. R. Milaeva, J. A. Gracheva, V. Yu. Tyurin, N. Kourkoumelis, K. C. Christoforidis, A. K. Metsios, S. Karkabounas, K. Chara labopoulos, Eur. J. Med. Chem., 2008, 43, 327–335.CrossRefGoogle Scholar
  39. 39.
    J. M. Lopez-Nicolas, R. Bru, A. Sanchez-Ferrer, F. Carcia-Carmona, Anal. Biochem., 1994, 221, 410–415.CrossRefGoogle Scholar
  40. 40.
    M. E. Neganova, V. A. Blik, S. G. Klochkov, N. E. Che purnova, E. F. Shevtsova, Neurochemical J., 2011, 5, 208–214..CrossRefGoogle Scholar
  41. 41.
    V. Z. Lankin, S. M. Gurevich, E. B. Burlakova, Trudy moskovskogo obshchestva ispytatelei prirody [Proceeding of the Moscow Society of Naturalists], 1975, 52, 73–78 (in Russian).Google Scholar
  42. 42.
    A. Jedsadayanmata, Naresuan University J., 2005, 13, 35–41.Google Scholar
  43. 43.
    P. J. Thornalley, Arch. Biochem. Biophys., 2003, 419, 31–40.CrossRefGoogle Scholar
  44. 44.
    V. Matheeussen, A.-M. Lambeir, W. Jungraithmayr, N. Gomez, K. Mc Entee, P. Van der Veken, S. Scharpé, I. De Meester, Clin. Chim. Acta, 2012, 413, 456–462.CrossRefGoogle Scholar
  45. 45.
    F. X. Pi-Sunyer, A. Schweizer, D. Mills, S. Dejager, Diabetes Res. Clin. Pract., 2007, 76, 132–138.CrossRefGoogle Scholar
  46. 46.
    H. H. Hess, J. E. Derr, Anal. Biochem., 1975, 63, 607–613.CrossRefGoogle Scholar
  47. 47.
    S. W. Suh, J. P. Bergher, C. M. Anderson, J. L. Treadway, K. Fosgerau, R. A. Swanson, J. Pharmacol. Exp. Ther., 2007, 321, 45–50.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • E. R. Milaeva
    • 1
    • 2
  • D. B. Shpakovsky
    • 1
  • I. A. Maklakova
    • 1
  • K. A. Rufanov
    • 1
  • M. E. Neganova
    • 2
  • E. F. Shevtsova
    • 2
  • A. V. Churakov
    • 3
  • V. A. Babkova
    • 4
  • D. A. Babkov
    • 4
  • V. A. Kosolapov
    • 4
  • A. A. Spasov
    • 4
  1. 1.M. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Institute of Physiologically Active CompoundsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  3. 3.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
  4. 4.Volgograd State Medical UniversityVolgogradRussian Federation

Personalised recommendations