Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 11, pp 2010–2015 | Cite as

N-(2-Azidoethyl) derivatives of methylenebis(1-oxytriaz-1-ene 2-oxides)

  • G. A. Smirnov
  • P. B. Gordeev
  • S. V. Nikitin
  • G. V. Pokhvisneva
  • T. V. Ternikova
  • I. M. Chistokhvalov
  • O. A. Luk’yanov
Full Articles
  • 12 Downloads

Abstract

A method for synthesizing new compounds capable of releasing NO within living organisms, namely, 2-azidoethyl derivatives of methylenebis(1-oxytriaz-1-ene 2-oxides) bearing one or few 2-azidoethyl moieties, was developed. The synthesis involves nucleophilic substitution of the bromine atoms of the parent 2-bromoethyl derivatives of methylenebis(1-oxytriaz-1-ene 2-oxides) with the azide group. Some of the synthesized compounds are of interest as promising energetic materials.

Key words

NO donors methylenebis(1-oxytriaz-1-ene 2-oxides) bis(2-bromoethyl) derivatives of methylenebis(1-oxytriaz-1-ene 2-oxides) tris(2-bromoethyl) derivatives of methyl enebis(1-oxytriaz-1-ene 2-oxides) bis(2-azidoethyl) derivatives of methylenebis(1-oxytriaz- 1-ene 2-oxides) tris(2-azidoethyl) derivatives of methylenebis(1-oxytriaz-1-ene 2-oxides) alkylation azidation nucleophilic substitution 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Velázquez, E. E. Knaus, J. Med. Chem., 2005, 48, 4061.CrossRefGoogle Scholar
  2. 2.
    R. S. Nandurdikar, A. E. Maciag, Zh. Cao, L. K. Keefer, J. E. Saavedra, Bioorg. Med. Chem., 2012, 20, 2025.CrossRefGoogle Scholar
  3. 3.
    J. Kaur, A. Bhardwaj, Z. Haung, E. E. Knaus, D. Narang, T. Y. Chen, F. Plane, J. Med. Chem., 2012, 55, 7883.CrossRefGoogle Scholar
  4. 4.
    I. Kaur, K. M. Kosak, J. N. Herron, S. E. Kern, K. M. Boucher, P. J. Shami, Pharm. Res., 2015, 32, 1395.CrossRefGoogle Scholar
  5. 5.
    S. Khodade, A. Kulkarni, A. S. Gupta, K. Sengupta, H. Chakrapani, Org. Lett., 2016, 18, 1274.CrossRefGoogle Scholar
  6. 6.
    V. P. Ananikov, E. A. Khokhlova, M. P. Egorov, A. M. Sakharov, S. G. Zlotin, A. V. Kucherov, L. M. Kustov, M. L. Gening, N. E. Nifantiev, Mendeleev Commun., 2015, 25, 75.CrossRefGoogle Scholar
  7. 7.
    S. G. Zlotin, A. M. Churakov, O. A. Luk’yanov, N. N. Makhova, A. Yu. Sukhorukov, V. A. Tartakovsky, Mendeleev Commun., 2015, 25, 399.CrossRefGoogle Scholar
  8. 8.
    S. G. Zlotin, A. M. Churakov, I. L. Dalinger, O. A. Luk’yanov, N. N. Makhova, A. Yu. Sukhorukov, V. A. Tartakovsky, M endeleev Commun., 2017, 27, 535.Google Scholar
  9. 9.
    K. M. Miranda, D. A. Wink, D. Basudhar, WO 2016073835 A1 20160512; https://patents.google.com.Google Scholar
  10. 10.
    E. J. Martinez, J. J. Talley, K. D. Jerome, T. L. Boehm, WO 2015108835; https://patents.google.com.Google Scholar
  11. 11.
    R. Xue, J. Wu, X. Luo, Y. Gong, Y. Huang, X. Shen, H. Zhang, Y. Zhang, Z. Huang, Org. Lett., 2016, 18, 5196; DOI: 10.1021/acs.orglett.6b02222.CrossRefGoogle Scholar
  12. 12.
    F. Kang, Y. Ai, Y. Zhang, Zh. Huang, Eur. J. Med. Chem., 2018, 149, 269.CrossRefGoogle Scholar
  13. 13.
    D. Basudhar, G. Bharadwaj, R. Y. Cheng, S. Jain, S. Shi, J. L. Heinecke, R. J. Holland, L. A. Ridnour, V. M. Caceres, R. C. Spadari-Bratfisch, J. Med. Chem., 2013, 56, 7804; DOI: 10.1021/jm400196q.CrossRefGoogle Scholar
  14. 14.
    L. Zhang, S. Hou, B. Li, J. Pan, L. Jiang, OncoTargets Therapy, 2018, 11, 361.CrossRefGoogle Scholar
  15. 15.
    G. A. Smirnov, S. V. Nikitin, P. B. Gordeev, G. V. Pokhvisneva, T. V. Ternikova, O. A. Luk’yanov, Russ. Chem. Bull., 2015, 64, 2706.CrossRefGoogle Scholar
  16. 16.
    G. V. Pokhvisneva, T. V. Ternikova, G. A. Smirnov, P. B. Gordeev, S. V. Nikitin, O. A. Luk’yanov, Russ. Chem. Bull., 2016, 65, 2644.CrossRefGoogle Scholar
  17. 17.
    T. V. Ternikova, G. V. Pokhvisneva, G. A. Smirnov, S. V. Nikitin, P. B. Gordeev, O. A. Luk’yanov, Russ. Chem. Bull., 2016, 65, 2873.CrossRefGoogle Scholar
  18. 18.
    G. V. Pokhvisneva, T. V. Ternikova, G. A. Smirnov, P. B. Gordeev, S. V. Nikitin, O. A. Luk’yanov, Russ. Chem. Bull., 2017, 66, 1234.CrossRefGoogle Scholar
  19. 19.
    T. V. Ternikova, G. V. Pokhvisneva, G. A. Smirnov, P. B. Gordeev, S. V. Nikitin, O. A. Luk’yanov, Russ. Chem. Bull., 2017, 66, 2103.CrossRefGoogle Scholar
  20. 20.
    S. V. Nikitin, G. V. Pokhvisneva, T. V. Ternikova, P. B. Gordeev, I. M. Chistokhvalov, G. A. Smirnov, O. A. Luk’yanov, Russ. Chem. Bull., 2018, 67, 1445.CrossRefGoogle Scholar
  21. 21.
    G. V. Pokhvisneva, P. B. Gordeev, S. V. Nikitin, G. A. Smirnov, T. V. Ternikova, O. A. Luk’yanov, Russ. Chem. Bull., 2018, 67, 1655.CrossRefGoogle Scholar
  22. 22.
    G. A. Smirnov, P. B. Gordeev, S. V. Nikitin, G. V. Pokhvisneva, T. V. Ternikova, I. M. Chistokhvalov, O. A. Luk’yanov, Russ. Chem. Bull., 2018, 67, 1662.CrossRefGoogle Scholar
  23. 23.
    G. A. Smirnov, P. B. Gordeev, S. V. Nikitin, G. V. Pokhvisneva, T. V. Ternikova, O. A. Luk’yanov, Russ. Chem. Bull., 2015, 64, 1057.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • G. A. Smirnov
    • 1
  • P. B. Gordeev
    • 1
  • S. V. Nikitin
    • 1
  • G. V. Pokhvisneva
    • 1
  • T. V. Ternikova
    • 1
  • I. M. Chistokhvalov
    • 2
  • O. A. Luk’yanov
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.D. Mendeleev University of Chemical Technology of RussiaMoscowRussian Federation

Personalised recommendations