Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 10, pp 1857–1867 | Cite as

Electrochemical transformations and antiradical activity of asymmetrical RS-substituted pyrocatechols

  • I. V. Smolyaninov
  • O. V. Pitikova
  • A. I. Poddel’sky
  • N. T. Berberova
Article
  • 5 Downloads

Abstract

Redox transformations of sulfides 1–8 combining a fragment of sterically hindered pyrocatechol with alkyl, cycloalkyl, and aromatic substituents were studied. The first step of electrooxidation of thioethers affords o-benzoquinones. The introduction of the redox-active thioether group extends the range of redox properties of pyrocatechols. In the second step, the thioether fragment is involved in the quasi-reversible anodic process, and the number of electrons participating in the electrode reaction depends on the structure of the hydrocarbon group bonded to the sulfur atom. The reactivity of compounds 1–8 toward O2•– was evaluated on the basis of the electrochemical data. Cyclopentyl, phenyl, or benzyl substituents in the thioether group exert a greater effect on the antiradical activity than the alkyl moieties. The formation of an o-semiquinolate radical anion in the reaction of pyrocatechol thioethers with KO2 was detected by the ESR method. It was shown using the reaction with the stable 2,2-diphenyl-1-picrylhydrazyl radical as an example that RS-functionalized pyrocatechols show a higher antiradical activity compared to 3,5-di-tert-butylpyrocatechol.

Key words

cyclic voltammetry catechol thioethers redox transformations antiradical activity o-benzoquinones 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Y. Kim, J. Y. Cho, Y. K. Ma, Y. G. Lee, J. H. Moon, Free Radical. Biol. Med., 2014, 71,379.CrossRefGoogle Scholar
  2. 2.
    V. Roginsky, T. Barsukova, D. Loshadkin, E. Pliss, Chem. Phys. Lipids, 2003, 125,49.CrossRefGoogle Scholar
  3. 3.
    X. Liu, Y. Ou, S. Chen, X. Li, H. Cheng, X. Jia, D. Wang, G.-C. Zhou, Eur. J. Med. Chem., 2010, 45, 2147.CrossRefGoogle Scholar
  4. 4.
    L. Ryckeweart, L. Sacconnay, P.-A. Carrupt, A. Nurisso, C. Simoes-Pires, Toxicol. Lett., 2014, 229,374.CrossRefGoogle Scholar
  5. 5.
    Y. Hong, S. Sengupta, W. Hur, T. Sim, J. Med. Chem., 2015, 58, 3739.CrossRefGoogle Scholar
  6. 6.
    Y. Soeda, M. Yoshikawa, O. F. X. Almeida, A. Sumioka, S. Maeda, H. Osada, Y. Kondoh, A. Saito, T. Miyasaka, T. Kimura, M. Suzuki, H. Koyama, Y. Yoshiike, H. Sugimoto, Y. Ihara, A. Takashima, Nat. Commun., 2015, 6, 10216.CrossRefGoogle Scholar
  7. 7.
    E. T. Denisov, I. B. Afanas´ev, Oxidation and Antioxidants in Organic Chemistry and Biology, CRC Press, Boca Raton–New York, 2005, p.981.CrossRefGoogle Scholar
  8. 8.
    M. Feng, B. Tang, S. Liang, X. Jiang, Curr. Top. Med. Chem., 2016, 16, 1200.CrossRefGoogle Scholar
  9. 9.
    E. A. Ilardi, E. Vitaku, J. T. Njardarson, J. Med. Chem., 2014, 57, 2832.CrossRefGoogle Scholar
  10. 10.
    D. A. Boyd, Angew. Chem., Int. Ed., 2016, 55, 15486.CrossRefGoogle Scholar
  11. 11.
    C. Viglianisi, M. Bartolozzi, G. F. Pedulli, R. Amorati, S. Menichetti, Chem. Eur. J., 2011, 17, 12396.CrossRefGoogle Scholar
  12. 12.
    J. Poon, J. Yan, V. P. Singh, P. J. Gates, L. Engman J. Org. Chem., 2016, 81, 12540.CrossRefGoogle Scholar
  13. 13.
    S. Kumar, J. Yan, J. Poon, V. P. Singh, X. Lu, M. Karlsson Ott, L. Engman, S. Kumar, Angew. Chem., Int. Ed., 2016, 55, 3729.CrossRefGoogle Scholar
  14. 14.
    G. A. M. Jardim, W. X. C. Oliveira, R. P. de Freitas, R. F. S. Menna-Barreto, T. L. Silva, M. O. F. Goulart, E. N. da Silva Júnior, Org. Biomol. Chem., 2018, 16, 1686.CrossRefGoogle Scholar
  15. 15.
    S. Menichetti, R. Amorati, V. Meoni, L. Tofani, G. Caminati, C. Viglianisi, Org. Lett., 2016, 18, 5464.CrossRefGoogle Scholar
  16. 16.
    J. Poon, V. P. Singh, J. Yan, L. Engman, Chem. Eur. J., 2016, 22, 2447.CrossRefGoogle Scholar
  17. 17.
    K. Tamura, E. C. Southwick, J. Kerns, K. Rosi, B. I. Carr, C. Wilcox, J. S. Lazo, Cancer Res., 2000, 60, 1317.Google Scholar
  18. 18.
    T. Besset, E. Braud, R. Jarray, C. Garbay, S. Kolb, P.-M. Leo, C. Morin, Eur. J. Chem., 2011, 2,423.CrossRefGoogle Scholar
  19. 19.
    S. Shaaban, R. Diestel, B. Hinkelmann, Y. Muthukumar, R. P. Verma, F. Sasse, C. Jacob, Eur. J. Med. Chem., 2012, 58,192.CrossRefGoogle Scholar
  20. 20.
    V. A. Kuropatov, V. K. Cherkasov, Yu. A. Kurskii, G. K. Fukin, L. G. Abakumova, G. A. Abakumov, Russ. Chem. Bull., 2006, 55,708.CrossRefGoogle Scholar
  21. 21.
    V. Kuropatov, S. Klementieva, G. Fukin, A. Mitin, S. Ketkov, Yu. Budnikova, V. Cherkasov, G. Abakumov, Tetrahedron, 2010, 66, 7605.CrossRefGoogle Scholar
  22. 22.
    V. Cherkasov, G. Abakumov, G. Fukin, S. Klementieva, V. Kuropatov, Chem. Eur. J., 2012, 18, 13821.CrossRefGoogle Scholar
  23. 23.
    N. O. Chalkov, V. K. Cherkasov, G. A. Abakumov, G. V. Romanenko, S. Yu. Ketkov, I. V. Smolyaninov, A. G. Starikov, V. A. Kuropatov, Eur. J. Org. Chem., 2014, 4571.Google Scholar
  24. 24.
    F. Pointillart, S. Klementieva, V. A. Kuropatov, Y. Le Gal, S. Golhen, O. Cador, V. Cherkasov, L. Ouahab, Chem. Commun., 2012, 48,714.CrossRefGoogle Scholar
  25. 25.
    K. A. Martyanov, V. K. Cherkasov, G. A. Abakumov, M. A. Samsonov, V. V. Khrizanforova, Yu. H. Budnikova, V. A. Kuropatov, Dalton Trans., 2016, 45, 7400.CrossRefGoogle Scholar
  26. 26.
    P. Kovacic, Med. Hypotheses, 2007, 69,510.CrossRefGoogle Scholar
  27. 27.
    P. Kovacic, R. Somanathan, Anti-Cancer Agents Med. Chem., 2011, 11,658.CrossRefGoogle Scholar
  28. 28.
    E. A. Hillard, F. C. de Abreu, D. C. M. Ferreira, G. Jaouen, M. O. F. Goulart, C. Amatore, Chem. Commun., 2008, 2612.Google Scholar
  29. 29.
    Y. G. De Paiva, F. R. Ferreira, T. L. Silva, E. Labbé, O. Buriez, C. Amatore, M. O. F. Goulart, Curr. Top. Med. Chem., 2015, 15,136.CrossRefGoogle Scholar
  30. 30.
    M. N. Peyrat-Maillard, S. Bonnely, C. Berset, Talanta, 2000, 51,709.CrossRefGoogle Scholar
  31. 31.
    M. Born, P. A. Carrupt, R. Zini, F. Bree, J. P. Tillement, K. Hostettmann, B. Testa, Helv. Chim. Acta, 1996, 79, 1147.CrossRefGoogle Scholar
  32. 32.
    N. A. Antonova, V. P. Osipova, M. N. Kolyada, I. V. Smolyaninov, N. T. Berberova, V. Yu. Tyurin, Wu Yaohuang, E. R. Milaeva, Dokl. Chem., 2010, 432,165.CrossRefGoogle Scholar
  33. 33.
    I. V. Smolyaninov, A. I. Poddel´sky, S. A. Smolyaninova, N. T. Berberova, Russ. J. Electrochem., 2015, 51, 1021.CrossRefGoogle Scholar
  34. 34.
    I. V. Smolyaninov, V. V. Kuzmin, M. V. Arsenyev, S. A. Smolyaninova, A. I. Poddel´sky, N. T. Berberova, Russ. Chem. Bull., 2017, 66, 1217.CrossRefGoogle Scholar
  35. 35.
    A. J. Gordon, R. A. Ford, The Chemist´s Companion, Wiley Intersci. Publ., New York, 1972, 541 pp.Google Scholar
  36. 36.
    I. V. Smolyaninov, A. I. Poddel´sky, N. T. Berberova, Russ. J. Electrochem., 2011, 47, 1211.CrossRefGoogle Scholar
  37. 37.
    S. J. L. Lauw, J. Y. H. Yeo, Z. Chiang, R. D. Webster, ChemElectroChem., 2017, 4, 1190.CrossRefGoogle Scholar
  38. 38.
    L. A. Maslovskaya, D. K. Petrikevich, V. A. Timoshchuk, O. I. Shadyro, Russ. J. Gen. Chem., 1996, 66, 1842.Google Scholar
  39. 39.
    C.-C. Zeng, F.-J. Liu, D.-W. Ping, L.-M. Hu, Y.-L Cai, R.-G. Zhong, Tetrahedron, 2009, 65, 4505.CrossRefGoogle Scholar
  40. 40.
    E. Tammari, N. Mirazi, D. Nematollahi, Mendeleev Commun., 2006, 16,285.CrossRefGoogle Scholar
  41. 41.
    S. S. Hosseiny Davarani, S. Ramyar, L. Masoumi, N. S. Fumani, A. B. Moghaddam, J. Electrochem. Soc., 2008, 155,120.CrossRefGoogle Scholar
  42. 42.
    V. A. Kokorekin, Y. A. Solomatin, M. L. Gening, V. A. Petrosyan, Mendeleev Commun., 2016, 26,540.CrossRefGoogle Scholar
  43. 43.
    V. A. Kokorekin, Y. A. Solomatin, M. L. Gening, V. A. Petrosyan, Mendeleev Commun., 2017, 27,586.CrossRefGoogle Scholar
  44. 44.
    I. V. Smolyaninov, O. V. Pitikova, E. S. Rychagova, E. O. Korchagina, A. I. Poddel´sky, S. A. Smolyaninova, N. T. Berberova, Russ. Chem. Bull., 2016, 65, 2861.CrossRefGoogle Scholar
  45. 45.
    P. D. Astudillo, J. Tiburcio, F. J. Gonzalez, J. Electroanal. Chem., 2007, 604,57.CrossRefGoogle Scholar
  46. 46.
    H. Beiginejad, D. Nematollahi, M. Bayat, J. Electrochem. Soc., 2013, 160, H693.CrossRefGoogle Scholar
  47. 47.
    Organic Electrochemistry, 4th ed., Eds H. Lund, O. Hammrich, Marcel Dekker Inc., New York, 2001, p. 1393.Google Scholar
  48. 48.
    C. J. Regan, D. P. Walton, O. S. Shafaat, D. A. Dougherty, J. Am. Chem. Soc., 2017, 139, 4729.CrossRefGoogle Scholar
  49. 49.
    T. Satoh, R. Stadler, S. R. McKercher, R. E. Williamson, G. P. Roth, S. A. Lipton, ASN Neuro, 2015, 7; DOI: 10.1177/1759091415593294.Google Scholar
  50. 50.
    J. L. Bolton, T. Dunlap, Chem. Res. Toxicol., 2017, 30,13.CrossRefGoogle Scholar
  51. 51.
    M. Hayyan, M. A. Hashim, I. M. AlNashef, Chem. Rev., 2016, 116, 3029.CrossRefGoogle Scholar
  52. 52.
    M. L. Pegis, C. F. Wise, D. J. Martin, J. M. Mayer, Chem. Rev., 2018,118, 2340.CrossRefGoogle Scholar
  53. 53.
    A. Rene, M.-L. Abasq, D. Hauchard, P. Hapiot, Anal. Chem., 2010, 82, 8703.CrossRefGoogle Scholar
  54. 54.
    T. Nakayama, B. Uno, Electrochim. Acta, 2016, 208,304.CrossRefGoogle Scholar
  55. 55.
    J. Quintero-Saumeth, D. A. Rincon, M. Doerr, M. C. Daza, Phys. Chem. Chem. Phys., 2017, 19, 26179.CrossRefGoogle Scholar
  56. 56.
    M. D. Stallings, M. M. Morrison, D. T. Sawyer, Inorg. Chem., 1981, 20, 2655.CrossRefGoogle Scholar
  57. 57.
    M. C. Foti, J. Agric. Food Chem., 2015, 63, 8765.CrossRefGoogle Scholar
  58. 58.
    I. V. Smolyaninov, A. I. Poddel´sky, S. A. Smolyaninova, S. A. Luzhnova, N. T. Berberova, Russ. Chem. Bull., 2015, 64, 2223.CrossRefGoogle Scholar
  59. 59.
    C. Sanchez-Moreno, J. A. Larrauri, F. Saura-Calixto, J. Sci. Food Agric., 1998, 76, 270.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • I. V. Smolyaninov
    • 1
    • 2
  • O. V. Pitikova
    • 3
  • A. I. Poddel’sky
    • 4
  • N. T. Berberova
    • 1
  1. 1.Astrakhan State Technical UniversityAstrakhanRussian Federation
  2. 2.Southern Scientific CenterRussian Academy of SciencesRostov-on-DonRussian Federation
  3. 3.Ingineering Centre LLC “Gazprom dobycha Astrakhan,”AstrakhanRussian Federation
  4. 4.G. A. Razuvaev Institute of Organometallic ChemistryRussian Academy of SciencesNizhni NovgorodRussian Federation

Personalised recommendations