Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 10, pp 1851–1856 | Cite as

Molecular complexes and solvation interactions in the reaction of quinone imines with thiols

  • V. T. Varlamov
  • B. E. Krisyuk
  • V. Yu. Grigorev
Article
  • 4 Downloads

Abstract

This study aims to investigate the role of complexation between reagents and the role of solvation of reagents by solvents in the kinetics of chain reactions of quinone imines with thiols. The thermodynamic characteristics of the complexation of quinone imines with thiophenol in CCl4, chlorobenzene, and ethanol, as well as of the complexation of quinone imines and thiophenol with these solvents were calculated by quantum chemical methods (DFT calculations at the PBE/cc-pVDZ level of theory) and in terms of the additive-multiplicative model. Both approaches give consistent results. The formation of molecular complexes in quinone imine–thiphenol systems is accompanied by a 10–30 kJ mol–1 decrease in enthalpy and has only a slight effect on the reaction mechanism.

Key words

quinone imines thiophenol quantum chemical calculations DFT method PBE/cc-pVDZ additive-multiplicative model hydrogen bonding complexation solvation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    The Chemistry of the Quinoid Compounds, Ed. S. Patai, Vol. 1, Parts 1–2, John Wiley and Sons, London–New York–Sydney–Toronto, 1974, 1247 pp.Google Scholar
  2. 2.
    The Chemistry of the Quinoid Compounds, Eds S. Patai, Z. Ruppoport, Vol. 2, Parts 1–2, John Wiley and Sons, Chichester–New York–Brisbane–Toronto–Singapore, 1988, 1675 pp.Google Scholar
  3. 3.
    J. M. Snell, A. Weissberger, J. Am. Chem. Soc., 1939, 61,450.CrossRefGoogle Scholar
  4. 4.
    G. B. Afanas´eva, E. V. Tsoi, O. N. Chupakhin, E. O. Sidorov, S. V. Konovalov, Zh. Org. Khim. [J. Org. Chem. USSR], 1985, 21, 1926 (in Russian).Google Scholar
  5. 5.
    M. K. Vadnere, L. Maggiora, M. P. Mertes, J. Med. Chem., 1986, 29, 1714.CrossRefGoogle Scholar
  6. 6.
    R. F. Porter, W. W. Rees, E. Frauenglass, H. S. Wilgus, G. H. Nawn, P. P. Chiesa, J. R. Gates, Jr., J. Org. Chem., 1964, 29,588.CrossRefGoogle Scholar
  7. 7.
    A. A. Kutyrev, V. V. Moskva, Russ. Chem. Rev, 1991, 60,72.CrossRefGoogle Scholar
  8. 8.
    L. Abraham, R. Joshi, P. Pardasani, R. T. Pardasani, J. Brazil. Chem. Soc., 2011, 22,385.CrossRefGoogle Scholar
  9. 9.
    S. Lu, W.-W. Li, D. Rotem, E. Mikhailova, H. Bayley, Nat. Chem., 2010, 2,921.CrossRefGoogle Scholar
  10. 10.
    Y. Kumagai, J. Health Sci., 2009, 55,887.CrossRefGoogle Scholar
  11. 11.
    D. W. Potter, J. A. Hinson, Mol. Pharmacol., 1986, 30,33.Google Scholar
  12. 12.
    M. Liebeke, D. C. Pother, N. van Duy, D. Becher, F. Ho chgrafe, M. Lalk, M. Hecker, H. Antelmann, Mol. Microbiol., 2008, 6, 1513.CrossRefGoogle Scholar
  13. 13.
    Methods in Enzymology, Vol. 378, 382, Eds H. Sies, L. Packer, Elsevier Acad. Press, San Diego–London, 2004.Google Scholar
  14. 14.
    V. T. Varlamov, A. V. Gadomska, Russ. J. Phys. Chem. A, 2015, 89,616.CrossRefGoogle Scholar
  15. 15.
    V. T. Varlamov, S. Ya. Gadomsky, A. V. Gadomska, Kinet. Catal. (Engl. Transl.), 2015, 56,276.CrossRefGoogle Scholar
  16. 16.
    A. V. Gadomska, S. Ya. Gadomsky, V. T. Varlamov, Kinet. Catal. (Engl. Transl.), 2012, 53,525.CrossRefGoogle Scholar
  17. 17.
    V. T. Varlamov, A. V. Gadomska, Russ. Chem. Bull., 2016, 65, 2046.CrossRefGoogle Scholar
  18. 18.
    O. A. Raevsky, V. Yu. Grigor´ev, D. B. Kireev, H. S. Zefirov, Quant. Struct.-Act. Relat., 1992, 11,49.CrossRefGoogle Scholar
  19. 19.
    V. T. Varlamov, S. Ya. Gadomsky, Russ. J. Phys. Chem. A, 2017, 91,835.CrossRefGoogle Scholar
  20. 20.
    J. Tomasi, B. Mennucci, R. Cammi, Chem. Rev., 2005, 105, 2999.CrossRefGoogle Scholar
  21. 21.
    S. K. Ignatov, Moltran v. 2.5, Nizhny Novgorod, 2004; http://ichem.unn.ru/tcg/Moltran.htm. Google Scholar
  22. 22.
    J. M. López-de-Luzuriaga, E. Manso, M. Monge, D. Sampedro, Theor. Chem. Acc., 2015, 134,55.CrossRefGoogle Scholar
  23. 23.
    T. Kaya, C. Selçuki, N. Acar, Comp. Theor. Chem., 2015, 1073,9.CrossRefGoogle Scholar
  24. 24.
    A. Bauza, D. Quinonero, A. Frontera, Molecules, 2018, 23,18.CrossRefGoogle Scholar
  25. 25.
    S. Miertuš, E. Scrocco, J. Tomasi, Chem. Phys., 1981, 55,117.CrossRefGoogle Scholar
  26. 26.
    Spravochnik khimika [Chemist's Handbook], 2nd ed., Ed. B. P. Nikol´skii, Khimiya, Leningrad–Moscow, 1962, Vol. 1, 963–974 (in Russian).Google Scholar
  27. 27.
    L. Taimr, J. Rotschova, J. Pospisil, Chem. Ind., 1979, No. 12,413.Google Scholar
  28. 28.
    O. A. Raevsky, V. Yu. Grigor´ev, S. V. Trepalin, Svidetel´stvo ob ofitsial´noi registratsii programmy dlya EVM HYBOT (Hydrogen Bond Thermodynamics) No. 990090 ot 26 fevralya 1999 [Certificate of State Registration of a Computer Program HYBOT (Hydrogen Bond Thermodynamics) No. 990090 dated February 26, 1999], Moscow, Federal´naya sluzhba po intellektual´noi sobstvennosti, patentam i tovarnym znakam [Federal Service for Intellectual Property, Patents, and Trademarks] (in Russian).Google Scholar
  29. 29.
    A. F. Foubert, P. L. Huyskens, Can. J. Chem., 1976, 54, 610.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. T. Varlamov
    • 1
  • B. E. Krisyuk
    • 2
  • V. Yu. Grigorev
    • 1
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.Institute of Physiologically Active CompoundsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation

Personalised recommendations