Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 10, pp 1794–1802 | Cite as

H–D exchange between quercetin and solvent in the presence of AuI chloride complexes with DMSO: quantum chemical modeling

  • N. G. Nikitenko
  • A. F. Shestakov
Full Articles
  • 3 Downloads

Abstract

The pathways of H–D exchange between quercetin and solvent taking into account the effects of the medium are considered using quantum chemical calculations and the mechanism of selective H–D exchange reaction at the C(2′) position observed only in the presence of Au complexes is identified. It is shown that only the exchange processes in the A-ring have suffi- ciently low activation barriers. In the acidic and alkaline media, these processes occur at lower energies as compared with the reaction in the neutral system, which qualitatively agrees with the published experimental data. It was shown that the AuI chloride complex with DMSO is able to react with the C–H bond at the C(2′) position by the mechanism of electrophilic substitution under mild conditions.

Key words

H–D exchange quercetin gold complexes DMSO reaction mechanism 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. V. Jovanovic, S. Steenken, M. Tosic, B. Marjanovic, M. G. Simic, J. Am. Chem. Soc., 1994, 116, 4846.CrossRefGoogle Scholar
  2. 2.
    A. Saija, M. Scalese, M. Lanza, D. Marzullo, F. Bonina, F. Castelli, Free Radic. Biol. Med., 1995, 19,481.CrossRefGoogle Scholar
  3. 3.
    J. Azzi, A. Jraij, L. Auezova, S. Fourmentin, H. Greige-Gerges, Food Hydrocolloids, 2018, 81,328.CrossRefGoogle Scholar
  4. 4.
    O. M. Ahmed, T. Mohamed, H. Moustafa, H. Hamdy, R. R. Ahmed, E. Aboud, Biomed. Pharmacother., 2018, 101,58.CrossRefGoogle Scholar
  5. 5.
    N. G. Nikitenko, Cand. Sc. (Chem.) Thesis, Institute of Problems of Chemical Physics, Russian Academy of Sciences, Chernogolovka, 2011, 177 pp. (in Russian).Google Scholar
  6. 6.
    G. Z. Jin, Y. Yamagata, K. I. Tomita, Acta Crystallogr. Sect. C, 1990, 46,310.CrossRefGoogle Scholar
  7. 7.
    A. M. Mendoza-Wilson, D. Glossman-Mitnik, J. Mol. Struct. THEOCHEM, 2004, 681,71.CrossRefGoogle Scholar
  8. 8.
    D. Vasilescu, R. Girma, Int. J. Quantum Chem., 2002, 90,888.CrossRefGoogle Scholar
  9. 9.
    S. Erkoc, F. Erkoc, N. Keskin, J. Mol. Struct. THEOCHEM, 2003, 631,141.CrossRefGoogle Scholar
  10. 10.
    T. Teslova, C. Corredor, R. Livingstone, T. Spataru, R. L. Birke, J. R. Lombardi, M. V. Cañamares, M. Leona, J. Raman. Spectrosc., 2007, 38,802.CrossRefGoogle Scholar
  11. 11.
    J. P. Cornard, J. C. Merlin, A. C. Boudet, L. Vrielynck, Biospectroscopy, 1997, 3,183.CrossRefGoogle Scholar
  12. 12.
    M. Leopoldini, T. Marino, N. Russo, M. Toscano, Theor. Chem. Acc., 2004, 111,210.CrossRefGoogle Scholar
  13. 13.
    N. Russo, M. Toscano, N. Uccella, J. Agric. Food Chem., 2000, 48, 3232.CrossRefGoogle Scholar
  14. 14.
    S. A. B. E. van Acker, M. J. de Groot, D.-J. van den Berg, M. N. J. L. Tromp, G. Donné-Op den Kelder, W. J. F. van der Vijgh, A. Bast, Chem. Res. Toxicol., 1996, 9, 1305.CrossRefGoogle Scholar
  15. 15.
    J. P. Cornard, L. Dangleterre, C. Lapouge, J. Phys. Chem. A, 2005, 109, 10044.CrossRefGoogle Scholar
  16. 16.
    J.-T. Chien, D.-J. Hsu, B.-H. Chen, J. Agric. Food Chem., 2006, 54, 1486.CrossRefGoogle Scholar
  17. 17.
    S. Hirota, U. Takahama, T. N. Ly, R. Yamauchi, J. Agric. Food Chem., 2005, 53, 3265.CrossRefGoogle Scholar
  18. 18.
    S. Rohn, H. M. Rawel, J. Kroll, J. Agric. Food Chem., 2004, 52, 4725.CrossRefGoogle Scholar
  19. 19.
    M. I. Kaldas, U. K. Walle, H. van der Woude, J. M. McMillan, T. Walle, J. Agric. Food Chem., 2005, 53, 4194.CrossRefGoogle Scholar
  20. 20.
    H. J. Heo, C. Y. Lee, J. Agric. Food Chem., 2004, 52, 7514.CrossRefGoogle Scholar
  21. 21.
    K. Murota, Y. Mitsukuni, M. Ichikawa, T. Tsushida, S. Miyamoto, J. Terao, J. Agric. Food Chem., 2004, 52, 1907.CrossRefGoogle Scholar
  22. 22.
    V. A. Kostyuk, A. I. Potapovich, Biochem. Int., 1989, 19, 1117.Google Scholar
  23. 23.
    M. Rossi, L. F. Rickles, W. A. Halpin, Bioorg. Chem., 1986, 14,55.CrossRefGoogle Scholar
  24. 24.
    A. M. O. Brett, M.-E. Ghica, Electroanalysis, 2003, 15, 1745.CrossRefGoogle Scholar
  25. 25.
    A. F. Shestakov, S. A. Golovanova, N. V. Lariontseva, A. P. Sadkov, V. M. Martynenko, L. A. Levchenko, Russ. Chem. Bull., 2015, 64, 2477.CrossRefGoogle Scholar
  26. 26.
    A. F. Shestakov, A. V. Chernyak, N. V. Lariontseva, S. A. Golovanova, A. P. Sadkov, L. A. Levchenko, Mendeleev Commun., 2013, 23,98.CrossRefGoogle Scholar
  27. 27.
    M. C. Foti, C. Rocco, Tetrahedron Lett., 2014, 55, 4359.CrossRefGoogle Scholar
  28. 28.
    S. Faizi, H. Siddiqi, A. Naz, S. Bano, M. K. Lubna, Helv. Chim. Acta, 2010, 93,466.CrossRefGoogle Scholar
  29. 29.
    M. Jordheim, T. Fossen, J. Songstad, Ø. M. Andersen, J. Agric. Food Chem., 2007, 55, 8261.CrossRefGoogle Scholar
  30. 30.
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  31. 31.
    W. J. Stevens, H. Bash, M. Krauss, J. Chem. Phys., 1984, 81, 6026.CrossRefGoogle Scholar
  32. 32.
    W. J. Stevens, M. Krauss, H. Bash, P. G. Jasien, Can. J. Chem., 1992, 70,612.CrossRefGoogle Scholar
  33. 33.
    D. N. Laikov, Y. A. Ustynyuk, Russ. Chem. Bull., 2005, 54,820.CrossRefGoogle Scholar
  34. 34.
    G. W. T. M. J. Frisch, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03. Revision E.01, Gaussian, Inc., Wallingford CT, 2004.Google Scholar
  35. 35.
    V. Barone, M. Cossi, J. Tomasi, J. Chem. Phys., 1997, 107, 3210.CrossRefGoogle Scholar
  36. 36.
    N. G. Nikitenko, A. F. Shestakov, Mendeleev Commun., 2017, 27,144.CrossRefGoogle Scholar
  37. 37.
    N. G. Nikitenko, A. F. Shestakov, Dokl. Chem. (Engl. Transl.), 2013, 450, 127.aaaaGoogle Scholar
  38. 38.
    N. G. Nikitenko, A. F. Shestakov, Kinet. Catal. (Engl. Transl.), 2013, 54,168.CrossRefGoogle Scholar
  39. 39.
    A. F. Shestakov, N. F. Goldshleger, J. Organomet. Chem., 2015, 793,17.CrossRefGoogle Scholar
  40. 40.
    N. G. J. Clayden, S. Warren, P. Wothers, in Organic Chemistry, Oxford University Press Inc., New York, 2001, p.547.Google Scholar
  41. 41.
    V. F. Traven, V. V. Negrebetsky, L. I. Vorobjeva, E. A. Carberry, Can. J. Chem.-Rev. Can. Chim., 1997, 75,377.CrossRefGoogle Scholar
  42. 42.
    F. L. Hirshfeld, Theor. Chim. Acta, 1977, 44,129.CrossRefGoogle Scholar
  43. 43.
    L. A. Levchenko, S. A. Golovanova, N. V. Lariontseva, A. P. Sadkov, D. N. Voilov, Y. M. Shul´ga, N. G. Nikitenko, A. F. Shestakov, Russ. Chem. Bull., 2011, 60,426.CrossRefGoogle Scholar
  44. 44.
    P. G. Jones, J. Lautner, Acta Crystallogr. Sect. C, 1988, 44, 2089.CrossRefGoogle Scholar
  45. 45.
    H. de la Riva, A. Pintado-Alba, M. Nieuwenhuyzen, C. Hardacre, M. C. Lagunas, Chem. Commun., 2005, 4970.Google Scholar
  46. 46.
    H. Schmidbaur, Gold Bull., 2000, 33,3.CrossRefGoogle Scholar
  47. 47.
    R. Narayanaswamy, M. A. Young, E. Parkhurst, M. Ouellette, M. E. Kerr, D. M. Ho, R. C. Elder, A. E. Bruce, M. R. M. Bruce, Inorg. Chem., 1993, 32, 2506.CrossRefGoogle Scholar
  48. 48.
    C. Schröter, B. Roelfs, T. Solomun, Surf. Sci., 1997, 380, L441.CrossRefGoogle Scholar
  49. 49.
    N. Ikemiya, A. A. Gewirth, J. Phys. Chem. B, 2000, 104,873.CrossRefGoogle Scholar
  50. 50.
    M. Balcerzak, M. Kopacz, A. Kosiorek, E. Swiecicka, S. Kus, Anal. Sci., 2004, 20, 1333.CrossRefGoogle Scholar
  51. 51.
    D. K. Das, A. Chakraborty, S. Bhattacharjee, S. Dey, J. Exp. Nanosci., 2013, 8,649.CrossRefGoogle Scholar
  52. 52.
    A. M. Bondzic, T. D. Lazarevic-Pasti, B. P. Bondzic, M. B. Colovic, M. B. Jadranin, V. M. Vasic, New J. Chem., 2013, 37,901.CrossRefGoogle Scholar
  53. 53.
    L. A. Levchenko, A. P. Sadkov, N. V. Lariontseva, V. S. Kulikova, A. K. Shilova, A. E. Shilov, Dokl. Chem. (Engl. Transl.), 2004, 394,33.Google Scholar
  54. 54.
    L. A. Levchenko, V. G. Kartsev, A. P. Sadkov, A. F. Shestakov, A. K. Shilova, A. E. Shilov, Dokl. Chem. (Engl. Transl.), 2007, 412,35.Google Scholar
  55. 55.
    L. A. Levchenko, N. G. Lobanova, V. M. Martynenko, A. P. Sadkov, A. F. Shestakov, A. K. Shilova, A. E. Shilov, Dokl. Chem. (Engl. Transl.), 2010, 430, 50.Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.Faculty of Fundamental Physical and Chemical EngineeringM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations