Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 4, pp 757–761 | Cite as

Macromolecular systems and nanocomposites based on N-succinylchitosan and silver nanoparticles

  • V. A. Alexandrova
  • A. A. Revina
  • S. A. Busev
  • V. S. Sadykova
Full Article
  • 13 Downloads

Abstract

A water-soluble chitosan derivative, namely, N-succinylchitosan (NS-Chit), was used as a matrix for the formation of silver nanoparticles (AgNP) by metal ion re duction under influence of microwave irradiation in the presence of D-glucose as a reducing agent. The electron plasmon resonance spectra (λmax = 410 nm) obtained for the irradiated solutions were typical of spherical silver nanoparticles. The in vitro tests confirmed a high bactericidal activity of the colloidal solution containing AgNP in a NS-Chit polymer matrix against strains of grampositive bacteria, namely, Bacillus subtillus (ATCC 6633), B. coagulans (429), and Staphylococcus aureus (ATCC 21027).

Key words

chitosan silver nanoparticles spectrophotometry TEM microwave irradiation bactericidal activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. A. Dos Santos, M. M. Seckler, A. P. Ingle, I. Gupta, S. Galdiero, M. Galdiero, A. Gade, M. Rai, J. Pharm. Sci., 2014, 103, 1931.CrossRefPubMedGoogle Scholar
  2. 2.
    C. Y. Lai, C. F. Cheong, J. S. Mandeep, H. B. Abdullah, N. Amin, K. W. Lai, J. Mater. Eng. Perform., 2014, 23, 3541.CrossRefGoogle Scholar
  3. 3.
    J. An, Q. Luo, X. Yuan, D. Wang, X. Li, J. App. Polymer Sci., 2011, 120, 3180.CrossRefGoogle Scholar
  4. 4.
    V. K. Sharma, R. A. Yngard, Y. Lin, Adv. Colloids Interfaces Sci., 2009, 145,83.CrossRefGoogle Scholar
  5. 5.
    M. J. Laudenslager, J. D. Schiffman, C. L. Schauer, Biomacro molecules, 2008, 9, 2682.CrossRefGoogle Scholar
  6. 6.
    Q. Zhang, M. Zhai, J. Peng, Y. Hao, J. Li, Nucl. Instr. Meth. Phys. Res. B, 2012, 286,334.CrossRefGoogle Scholar
  7. 7.
    M. V. Kiryukhin, B. M. Sergeev, V. G. Sergeyev, A. N. Prusov, Polym. Sci. B, 2000, 42,158.Google Scholar
  8. 8.
    N. V. Orlov, Russ. Chem. Bull., 2016, 65, 1418.CrossRefGoogle Scholar
  9. 9.
    S. Yu. Bratskaya, A. V. Pestov, Khelatiruyushchie proizvodnye khitozana [Chelating Derivatives of Chitosan], Dal´nauka, Vladivostok, 2016, 229 pp. (in Russian).Google Scholar
  10. 10.
    D. Elich, A. Komi, M. Hamblin, Int. J. Adv. Res., 2016, 4,411.Google Scholar
  11. 11.
    M. J. Laudenslager, J. D. Schiffman, C. L. Schauer, Biomacro molecules, 2008, 9, 2682.CrossRefGoogle Scholar
  12. 12.
    B. M. Sergeev, M. V. Kiryukhin, F. N. Bakhov, V. G. Sergeev, Vestn. MGU, Ser. 2, Khimiya, 2001, 42, 308 [Moscow Univ. Chem. Bull., Ser. Khim. (Engl. Transl.), 2001, 42].Google Scholar
  13. 13.
    Z. Aiping, C. Tian, Y. Lanhua, W. Hao, L. Ping, Carbohyrate Polymers, 2006, 66,274.CrossRefGoogle Scholar
  14. 14.
    A. G. Pomogaylo, G. I. Dzhardimalieva, Metallopolimernye gibridnye nanokompozity [Metal-Polymer Hybrid Nano composites], Nauka, Moscow, 2015, 494 pp. (in Russian).Google Scholar
  15. 15.
    G. Schimmel´, Metodika elektronnoy mikroskopii [Elect ron Microscopy Procedure], Mir, Moscow, 1972, 300 pp. (in Russian).Google Scholar
  16. 16.
    M. Balouiri, M. Sadiki, S. K. Ibnsouda, J. Pharm. Anal., 2016, 6, 71.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • V. A. Alexandrova
    • 1
  • A. A. Revina
    • 2
  • S. A. Busev
    • 2
  • V. S. Sadykova
    • 3
  1. 1.A. V. Topchiev Institute of Petrochemical SynthesisRussian Academy of SciencesMoscow, Russian FederationRussia
  2. 2.A. N. Frumkin Institute of Physical Chemistry and ElectrochemistryRussian Academy of SciencesMoscow, Russian FederationRussia
  3. 3.G. F. Gause Research Institute of New Antibiotics and TechnologyMoscow, Russian FederationRussia

Personalised recommendations