Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 4, pp 647–654 | Cite as

Optimization of signal-to-noise ratio in the in vivo31P magnetic resonance spectra of the human brain

  • A. V. Manzhurtsev
  • N. A. Semenova
  • T. A. Akhadov
  • O. V. Bozhko
  • S. D. Varfolomeev
Full Article
  • 14 Downloads

Abstract

The main problem in 31P magnetic resonance spectroscopy is a low signal-to-noise ratio (SNR) of spectra acquired with clinical magnetic resonance imaging (MRI) scanners. Using spin-spin phosphorus-proton (31P-1H) decoupling and heteronuclear Overhauser effect and taking into account the effect of the longitudinal relaxation time T1 on the SNR, the method for localization and excitation of the region of interest (Image Selected in vivo Spectroscopy pulse sequence) was optimized to increase the SNR in the 31P magnetic resonance spectra of the human brain to ~50% without increasing signal acquisition time.

Key words

31P magnetic resonance spectroscopy signal-to-noise ratio (SNR) proton decoupling nuclear Overhauser effect repetition time (TR) 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Sato, M. Kataoka, Y. Kuwabara, M. Kimura, Y. Seo, A. Masaoka, J. Surg. Res., 1996, 61,373.CrossRefGoogle Scholar
  2. 2.
    T. E. Merchanta, J. N. Kasimos, T. Vroom, E. de Bree, J. L. Iwata, P. W. de Graaf, T. Glonek, Cancer Lett., 2002, 176,159.CrossRefGoogle Scholar
  3. 3.
    A. V. Manzhurtsev, N. A. Semenova, M. V. Ublinskii, T. A. Akhadov, S. D. Varfolomeev, Russ. Chem. Bull., 2016, 65, 1630.CrossRefGoogle Scholar
  4. 4.
    F. Du, A. J. Cooper, T. Thida, S. Sehovic, S. E. Lukas, B. M. Cohen, X. Zhang, D. Ongür, JAMA Psychiatry, 2014, 71,19.CrossRefGoogle Scholar
  5. 5.
    O. A. Petroff, J. W. Prichard, K. L. Behar, J. R. Alger, J. A. den Hollander, R. G. Shulman, Neurology, 1985, 35,781.CrossRefGoogle Scholar
  6. 6.
    P. B. Barker, X. Golay, D. Artemov, R. Ouwerkerk, M. A. Smith, A. J. Shaka, Magn. Res. Med., 2001, 45,226.CrossRefGoogle Scholar
  7. 7.
    T. D. W. Claridge, High-Resolution NMR Techniques in Organic Chemistry, 3rd ed., Ch. 9, Correlations Through Space: The Nuclear Overhauser Effect, Elsevier, Oxford, UK, 2016, 552 pp.Google Scholar
  8. 8.
    A. L. L. Kolkovsky, in 1H and 31P NMR Spectroscopy for the Study of Brain Metabolism at Ultra High Magnetic Field from Rodents to Men, Université Paris Sud, Paris XI, 2015, Ch. 1.2.4, p.39.Google Scholar
  9. 9.
    P. Prasad, Magnetic Resonance Imaging: Methods and Biologic Applications, Springer Science and Business Media, New York, 2006, Ch. 2.4.1.3, p.230.CrossRefGoogle Scholar
  10. 10.
    Magnetic Resonance Spectroscopy, Eds. Ch. Stagg, D. Rothman, Elsevier, Oxford, 2013, Ch. 1.2, p. 25–26.Google Scholar
  11. 11.
    J. Ren, A. D. Sherry, C. R. Malloy, NMR Biomed., 2015, 28, 1455.CrossRefGoogle Scholar
  12. 12.
    A. J. Shaka, J. Keeler, T. Frenkiel, R. Freeman, J. Magn. Reson., 1983, 52,335.Google Scholar
  13. 13.
    J. Keller, Understanding NMR Spectroscopy, 2nd ed., University of Cambridge, Wiley, Cambridge, 2010, Ch. 9, p. 9–1.Google Scholar
  14. 14.
    R. Freeman, E. Kupce, NMR Biomed., 1997, 10,372.CrossRefGoogle Scholar
  15. 15.
    M. H. Levitt, Spin Dynamics: Basics of Nuclear Magnetic Resonance, 2nd ed., The University of Southampton, UK, Wiley, Southampton, 2008, Ch. 5.2, p. 86–89.Google Scholar
  16. 16.
    M. Chesler, Physiol. Rev., 2003, 83, 1183.CrossRefGoogle Scholar
  17. 17.
    V. A. Magnotta, H.-Y. Heo, B. J. Dlouhy, N. S. Dahdaleh, R. L. Follmer, D. R. Thedens, M. J. Welsh, J. A. Wemmie, PNAS, 2012, 109, 8270–8273.CrossRefGoogle Scholar
  18. 18.
    J. Novak, M. Wilson, L. MacPherson, T. N. Arvanitis, N. P. Davies, A. C. Peet, Eur. J. Radiology, 2014, 83, e106–e112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • A. V. Manzhurtsev
    • 1
    • 2
  • N. A. Semenova
    • 1
    • 2
    • 3
  • T. A. Akhadov
    • 2
  • O. V. Bozhko
    • 2
  • S. D. Varfolomeev
    • 1
  1. 1.Emanuel Institute of Biochemical PhysicsRussian Academy of SciencesMoscow, Russian FederationRussia
  2. 2.Research Institute of Children Emergency Surgery and TraumaMoscow, Russian FederationRussia
  3. 3.N. N. Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscow, Russian FederationRussia

Personalised recommendations