Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 4, pp 636–646 | Cite as

Effect of the hyaluronidase microe nvironment on the enzyme structure–function relationship and computational study of the in silico molecular docking of chondroitin sulfate and heparin short fragments to hyaluronidase

  • A. V. Maksimenko
  • R. Sh. Beabealashvili
Review

Abstract

The review addresses the biochemical interactions of hyaluronidases with components of the natural microenvironment. The effect of subtle structural differences between ligands on the enzyme structure–function relationship regulation is noted. Docking of chondroitin sulfate (CS) trimers (hexasaccharides) and heparin tetramers (octasaccharides) to the 3D model of the bovine testicular hyaluronidase (BTH) was performed by computational chemistry methods in order to elucidate the mechanism of regulation of the enzyme functioning in the body (using virtual screening, molecular dynamics, and calculation of surface electrostatic potential of protein complexes). Several binding sites for glycosaminoglycan (GAG) ligands were found to occur on the hyaluronidase surface. They are identical for CS trimers and heparin tetramers. The calculations showed the possibility of both reversible and irreversible conformational changes of the 3D structure of BTH, depending on the arrangement of negatively charged ligands on its globule. When the changes are irreversible, Glu-149 and Asp-147, which are key amino acid residues for the catalytic activity of BTH, can migrate from the vicinity of the native enzyme active site to the periphery of the protein molecule, thus inducing enzyme inactivation. The interaction of the GAG ligands with the BTH active site is mainly caused by electrostatic forces. Four or five binding sites of the chondroitin sulfate trimer proved to be critical for stabilization of the enzyme structure. Their occupation was sufficient for preventing irreversible deformation of the BTH molecule upon the insertion of the heparin ligand into the active site cavity. Protein stabilization is accompanied by the formation of a particular form of the surface electrostatic potential.

Key words

3D protein structure bovine testicular hyaluronidase chondroitin sulfate heparin glycosaminoglycan ligands docking molecular dynamics regulation of enzyme activity calculation of the surface electrostatic potential of the protein 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    O. C. Grant, M. B. Tessier, L. Meche, L. K. Mahal, B. L. Foley, R. J. Woods, Glycobiology, 2016, 26, 772; DOI: 10.1093/glycob/cww020.CrossRefGoogle Scholar
  2. 2.
    M. Agostino, N. S. Gandhi, R. L. Mancera, Glycobiology, 2014, 24,840.CrossRefGoogle Scholar
  3. 3.
    N. V. Sankaranarayanan, U. R. Desai, Glycobiology, 2014, 24, 1323.CrossRefGoogle Scholar
  4. 4.
    M. Jayakanthan, R. Jubendradass, S. C. D´Cruz, P. P. Mathur, Methods Mol. Biol., 2015, 1268,273.CrossRefGoogle Scholar
  5. 5.
    A. Maksimenko, A. Turashev, A. Fedorovich, A. Rogoza, E. Tischenko, J. Life Sci., 2013, 7,171.Google Scholar
  6. 6.
    A. V. Maksimenko, A. D. Turashev, R. S. Beabealashvili, Biochemistry (Moscow), 2015, 80,284.CrossRefGoogle Scholar
  7. 7.
    K. L. Chao, L. Muthukumar, O. Herzberg, Biochemistry, 2007, 46, 6911.CrossRefGoogle Scholar
  8. 8.
    K. S. Girish, K. Kemparaju, Biochemistry (Moscow), 2005, 70,948.CrossRefGoogle Scholar
  9. 9.
    T. Honda, T. Kaneiwa, S. Mizumoto, K. Sugahara, S. Yamada, Biomolecules, 2012, 2,549.CrossRefGoogle Scholar
  10. 10.
    F. Zhang, B. Walcott, D. Zhou, A. Gustchina, Y. Lasanajak, D. F. Smith, R. S. Fereira, M. T. S. Correia, P. M. G. Paiva, N. V. Bovin, A. Wlodawer, M. L. V. Oliva, R. J. Linhardt, Biochemistry, 2013, 52, 2148.CrossRefGoogle Scholar
  11. 11.
    V. K. Yadav, R. S. Mandal, B. L. Puniya, R. Kumar, S. Day, S. Singh, S. Yadav, Chem. Biol., Drug Des., 2015, 85,404.CrossRefGoogle Scholar
  12. 12.
    N. S. Gandhi, C. Freeman, C. R. Parish, R. L. Mancera, Glycobiology, 2012, 22,35.CrossRefGoogle Scholar
  13. 13.
    G. Jug, M. Anderluh, T. Tomasic, J. Mol. Model., 2015, 21, 164; DOI: 10.1007/s00894-015-2713-2.CrossRefGoogle Scholar
  14. 14.
    S. A. Samsonov, Y. Teyra, M. T. Pisabarro, J. Comput. Aided Mol. Des., 2011, 25,477.CrossRefGoogle Scholar
  15. 15.
    S. A. Samsonov, M. T. Pisabarro, Glycobiology, 2016, 26,850.CrossRefGoogle Scholar
  16. 16.
    L. Ballut, N. Sapay, E. Chautard, A. Imberty, S. Ricard-Blum, J. Mol. Recognit., 2013, 26,76.CrossRefGoogle Scholar
  17. 17.
    Y. Tatara, I. Kakizaki, S. Suto, H. Ishioka, M. Negishi, M. Endo, Glycobiology, 2015, 25, 557; DOI: 10.1093/glycob/ cwu186.CrossRefGoogle Scholar
  18. 18.
    A. V. Maksimenko, Khim.-Farm. Zh. [Chem. Pharm. J.], 2008, 42, No. 10, 3 (in Russian).Google Scholar
  19. 19.
    A. V. Maksimenko, R. Sh. Beabealashvili, Kardiol. Vestnik [Bull. Cardiol.], 2016, XI, 70 (in Russian).Google Scholar
  20. 20.
    S. Batool, S. Ferdous, M. A. Kamal, H. Iftikhar, S. Rashid, Enz. Eng., 2013, 2, 1; DOI: 10.4172/eeg.1000106.Google Scholar
  21. 21.
    A. V. Maksimenko, Russ. Chem. Bull. (Int. Ed.), 2015, 64, 2036.CrossRefGoogle Scholar
  22. 22.
    E. F. Pettersen, T. D. Goddard, C. C. Huang, G. S. Couch, D. M. Greenblatt, E. C. Meng, T. E. Ferrin, J. Comput. Chem., 2004, 25, 1605.CrossRefGoogle Scholar
  23. 23.
    M. F. Sanner, A. J. Olson, J. C. Spehner, Biopolymers, 1996, 38,305.CrossRefGoogle Scholar
  24. 24.
    P. T. Lang, S. R. Brozell, S. Mukherjee, E. F. Pettersen, E. C. Meng, V. Thomas, R. C. Rizzo, D. A. Case, T. L. James, I. D. Kuntz, RNA, 2009, 15, 1219.CrossRefGoogle Scholar
  25. 25.
    T. J. Dolinsky, P. Czodrowski, H. Li, J. E. Nielsen, J. H. Jensen, G. Klebe, N. A. Baker, Nucleic Acids Res., 2007, 35, W522.CrossRefGoogle Scholar
  26. 26.
    T. J. Dolinsky, J. E. Nielsen, J. A. McCammon, N. A. Baker, Nucleic Acids Res., 2004, 32, W665.CrossRefGoogle Scholar
  27. 27.
    N. A. Baker, D. Sept, S. Joseph, M. J. Holst, J. A. McCammon, Proc. Natl. Acad. Sci. USA, 2001, 98, 10037.CrossRefGoogle Scholar
  28. 28.
    B. Honig, A. Nicholls, Science, 1995, 268, 1144.CrossRefGoogle Scholar
  29. 29.
    A. Nicholls, K. Sharp, B. Honig, Proteins, 1991, 11,281.CrossRefGoogle Scholar
  30. 30.
    I. Klapper, R. Hagstrom, R. Fine, B. Honig, Proteins, 1986, 1,47.CrossRefGoogle Scholar
  31. 31.
    N. Guex, M. C. Peitsch, Electrophoresis, 1997, 18, 2714.CrossRefGoogle Scholar
  32. 32.
    J. C. Phillips, R. Braun, W. Wang, J. Gumbart, E. Tajkhorshid, E. Villa, C. Chipot, R. D. Skeel, L. Kale, K. Schulten, J. Comput. Chem., 2005, 26, 1781.CrossRefGoogle Scholar
  33. 33.
    R. Concu, G. Podda, E. Uriarte, H. Gonzalez-Diaz, J. Comp. Chem., 2009, 30, 1510.CrossRefGoogle Scholar
  34. 34.
    J. Batra, H. Tjong, H.-X. Zhou, Prot. Eng. Des. Sel., 2016, 29,301.CrossRefGoogle Scholar
  35. 35.
    S. Sakkiah, M. Arooj, M. R. Kumar, S. H. Eom, K. W. Lee, PLoS One, 2013, 8, e51429; DOI: 10.1371/journal. pone.0051429.CrossRefGoogle Scholar
  36. 36.
    B. Wang, L. Li, T. D. Hurley, S.O. Meroneh, J. Chem. Inf. Model., 2013, 53, 2659.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.National Medical Research Center of CardiologyMinistry of Health of the Russian FederationMoscow, Russian FederationRussia

Personalised recommendations