Advertisement

Russian Chemical Bulletin

, Volume 67, Issue 4, pp 614–623 | Cite as

Aspartic and glutamic acids polymers: preparation and applications in medicinal chemistry and pharmaceutics

  • O. V. Maslova
  • O. V. Senko
  • E. N. Efremenko
Review
  • 8 Downloads

Abstract

The methods of the fabrication of polymers based on aspartic and glutamic acids as monomers are reviewed. The methods are perspective from the viewpoint of green chemistry and economics. Actual tendencies existing in the application of the polymers in medicinal chemistry and pharmaceutics are also considered. The results of using mentioned polymers of amino acids to obtain stable nanosized enzymatic complex drugs, based on organophosphate hydrolase and possessing both antibacterial and antineurotoxic action are presented. The drugs are effective destructors of N-acyl homoserine lactones, playing the role of signaling molecules for the quorum response of gram-negative bacteria. These enzymatic-polymer complexes in combination with well-known antibiotics reduce antimicrobial doses inhibiting growth of the pathogens.

Key words

polyglutamic acid polyaspartic acid carriers drug delivery complexes enzymes organophosphate hydrolase 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. J. C. Constable, P. J. Dunn, J. D. Hayler, G. R. Humphrey, J. L. Leazer, Jr., R. J. Linderman, K. Lorenz, J. Manley, B. A. Pearlman, A. Wells, A. Zaks, T. Y. Zhang, Green Chem., 2007, 9,411.CrossRefGoogle Scholar
  2. 2.
    F. Chen, Nature Biotechnol., 2007, 25,759.CrossRefGoogle Scholar
  3. 3.
    H. E. Schoemaker, D. Mink, M. G. Wubbolts, Science, 2003, 299, 1694.CrossRefGoogle Scholar
  4. 4.
    J. J. Bozell, G. R. Petersen, Green Chem., 2010, 12,539.CrossRefGoogle Scholar
  5. 5.
    D. T. Allen, D. R. Shonnard, Green Engineering: Environmentally Conscious Design of Chemical Processes, Prentice Hall, New Jersey, 2001, 552 pp.Google Scholar
  6. 6.
    S. V. Gohil, S. Suhail, J. Rose, T. Vella, L. S. Nair, in Materials and Devices for Bone Disorders, Eds S. Bose, A. Bandyopadhyay, Academic Press, London, 2016.Google Scholar
  7. 7.
    G. I. Peterson, A. V. Dobrynin, M. L. Becker, ACS Macro Lett., 2016, 5, 1176.CrossRefGoogle Scholar
  8. 8.
    S. Roweton, S. J. Huang, G. Swift, J. Polym. Environ., 1997, 5,175.Google Scholar
  9. 9.
    T. Liang, C. X. Gao, L. Yang, H. L. Yang, Z. P. Luo, J. Mech. Behav. Biomed. Mater., 2017, 75,190.CrossRefGoogle Scholar
  10. 10.
    Q. Wang, X. M. Wang, L. L. Tian, Z. J. Cheng, F. Z. Cui, Soft Matter, 2011, 7, 9673.CrossRefGoogle Scholar
  11. 11.
    Z. Zhang, C. Zhang, Q. Guo, G. Ma, L. Shen, H. Yu, B. Lin, N. Lu, K. Huang, Chin. Med. Sci. J., 2017, 39,318.Google Scholar
  12. 12.
    O. Karaman, A. Kumar, S. Moeinzadeh, X. He, T. Cui, E. Jabbar, J. Tissue Eng. Regen. Med., 2016, 10,132.CrossRefGoogle Scholar
  13. 13.
    R. Ravichandran, J. R. Venugopal, S. Sundarrajan, S. Mukherjee, R. Sridhar, S. Ramakrishna, Mater. Sci. Eng. C, 2012, 32, 1443.CrossRefGoogle Scholar
  14. 14.
    W. Hu, X. Feng, X. Liu, S. Dai, W. Zeng, Q. Jiang, B. Chen, C. Quan, K. Sun, C. Zhang, J. Biomater. Sci. Polym. Ed., 2016, 27, 1775.CrossRefGoogle Scholar
  15. 15.
    R. Wang, B. Zhou, D. L. Xu, H. Xu, L. Liang, X. H. Feng, P.-K. Ouyang, B. Chi, J. Bioact. Compat. Polym., 2016, 31,242.CrossRefGoogle Scholar
  16. 16.
    A. Ogunleye, A. Bhat, V. U. Irorere, D. Hill, C. Williams, I. Radecka, Microbiology, 2015, 161,1.CrossRefGoogle Scholar
  17. 17.
    E. N. Efremenko, I. V. Lyagin, N. L. Klyachko, T. Bronich, N. V. Zavyalova, Y. Jiang, A. V. Kabanov, J. Control. Release, 2017, 247,175.CrossRefGoogle Scholar
  18. 18.
    J. Pantshwa, Y. E. Choonara, P. Kumar, L. C. du Toit, C. Penny, V. Pillay, J. Drug Deliv. Sci. Technol., 2017, 39, 308.aaaaaCrossRefGoogle Scholar
  19. 19.
    S. Wan, J. Huang, M. Guo, H. Zhang, Y. Cao, H. Yan, K. Liu, J. Biomed. Mater. Res. A, 2007, 80,946.CrossRefGoogle Scholar
  20. 20.
    M. Hagimori, E. Hatabe, K. Sano, H. Miyazaki, H. Sasaki, H. Saji, T. Mukai, Biol. Pharm. Bull., 2017, 40,297.CrossRefGoogle Scholar
  21. 21.
    C. Ma, J. Zhang, L. Guo, C. Du, P. Song, B. Zhao, L. Li, C. Li, R. Qiao, Mol. Pharm., 2015, 13,47.CrossRefGoogle Scholar
  22. 22.
    K. Kanda, Y. Kodama, T. Kurosaki, M. Imamura, H. Nakagawa, T. Muro, N. Higuchi, T. Nakamura, T. Kitahara, M. Honda, H. Sasaki, Biol. Pharm. Bull., 2013, 36, 1794.CrossRefGoogle Scholar
  23. 23.
    X. B. Dou, Y. Hu, N. N. Zhao, F. J. Xu, Biomaterials, 2014, 35, 3015.CrossRefGoogle Scholar
  24. 24.
    S. M. Thombre, B. D. Sarwade, J. Macromol. Sci., Pure Appl. Chem. A, 2005, 42, 1299.CrossRefGoogle Scholar
  25. 25.
    I. Bajaj, R. Singhal, Bioresour. Technol., 2011, 102, 5551.CrossRefGoogle Scholar
  26. 26.
    T. Rogalinski, S. Herrmann, G. Brunner, J. Supercrit. Fluids, 2005, 36,49.CrossRefGoogle Scholar
  27. 27.
    M. Ikeda, Amino Acid Production Processes, in Microbial Production of Amino Acids, Springer, Berlin, 2003, p.1.Google Scholar
  28. 28.
    L. E. Ni, A. P. Chiriac, C. M. Popescu, I. Neam, J. Optoelectron. Adv. Mater., 2006, 8,663.Google Scholar
  29. 29.
    V. A. Yablokov, Ya. A. Vasina, I. D. Grishin, Russ. J. Gen. Chem., 2013, 83, 2046.CrossRefGoogle Scholar
  30. 30.
    H. Shinoda, Y. Asou, A. Suetsugu, K. Tanaka, Macromol. Biosci., 2003, 3,34.CrossRefGoogle Scholar
  31. 31.
    T. R. Felthouse, J. C. Burnett, B. Horrell, M. J. Mummey, Y. J. Kuo, in Kirk-Othmer Encyclopedia of Chemical Technology, Huntsman Petrochemical Corporation Austin Laboratories, Texas, 2001, p.58.Google Scholar
  32. 32.
    T. Tosa, T. Sato, T. Mori, I. Chibata, Appl. Microbiology, 1974, 27, 886.Google Scholar
  33. 33.
    O. V. Senko, N. A. Stepanov, O. V. Maslova, I. V. Lyagin, E. N. Efremenko, Vestnik KuzGTU [Newsletter Kuzbass State Tech. Univ.], 2013, 1, 111 (in Russian).Google Scholar
  34. 34.
    J. G. Zeikus, M. K. Jain, P. Elankovan, Appl. Microbiol. Biotechnol., 1999, 51,545.CrossRefGoogle Scholar
  35. 35.
    J. M. Buescher, A. Margaritis, Crit. Rev. Biotechnol., 2007, 27,1.CrossRefGoogle Scholar
  36. 36.
    M. H. Sung, C. Park, C. J. Kim, H. Poo, K. Soda, M. Ashiuchi, Chem. Rec., 2005, 5,352.CrossRefGoogle Scholar
  37. 37.
    S. Sirisansaneeyakul, M. Cao, N. Kongklom, C. Chuensangjun, Z. Shi, Y. Chisti, World J. Microbiol. Biotechnol., 2017, 33,173.CrossRefGoogle Scholar
  38. 38.
    D. D. Derbikov, A. D. Novikov, T. A. Gubanova, M. G. Tarutina, I. T. Gvilava, D. M. Bubnov, A. S. Yanenko, Biotechnologiya [Biotechnology], 2016, 32, 38 (in Russian).Google Scholar
  39. 39.
    R. Schneerson, J. Kubler-Kielb, T. Y. Liu, Z. D. Dai, S. H. Leppla, A. Yergey, P. Backlund, J. Shiloach, F. Majadly, J. Robbins, Proc. Natl. Acad. Sci. USA, 2003, 100, 8945.CrossRefGoogle Scholar
  40. 40.
    E. J. Prodhomme, A. L. Tutt, M. J. Glennie, T. D. Bugg, Bioconjug. Chem., 2003, 14, 1148.CrossRefGoogle Scholar
  41. 41.
    C. Deng, J. Wu, R. Cheng, F. Meng, H. A. Klok, Z. Zhong, Prog. Polym. Sci., 2014, 39,330.CrossRefGoogle Scholar
  42. 42.
    A. C. Fonseca, M. H. Gil, P. N. Simões, Prog. Polym. Sci., 2014, 39, 1291.CrossRefGoogle Scholar
  43. 43.
    B. K. Pramanik, Y. Gao, L. Fan, F. A. Roddick, Z. Liu, Desalination, 2017, 404,224.CrossRefGoogle Scholar
  44. 44.
    M. Maeda, M. Kimura, Y. Hareyama, S. Inoue, J. Am. Chem. Soc., 1984, 106,250.CrossRefGoogle Scholar
  45. 45.
    B. K. Kishore, S. Ibrahim, P. Lambricht, G. Laurent, P. Maldague, P. M. Tulkens, J. Pharmacol. Exp. Ther., 1992, 262,424.Google Scholar
  46. 46.
    M. K. Reinhard, I. H. O. R. Bekersky, T. W. Sanders, B. J. Harris, G. H. Hottendorf, Antimicrob. Agents Chemother., 1994, 38,79.CrossRefGoogle Scholar
  47. 47.
    M. Molina, M. Asadian-Birjand, J. Balach, J. Bergueiro, E. Miceli, M. Calderón, Chem. Soc. Rev., 2015, 44, 6161.CrossRefGoogle Scholar
  48. 48.
    B. Gyarmati, E. Z. Mészár, L. Kiss, M. A. Deli, K. László, A. Szilágyi, Acta Biomater., 2015, 22,32.CrossRefGoogle Scholar
  49. 49.
    C. Zhang, S. Wu, J. Wu, D. Wu, X. Qin, J. Porous Mater., 2017, 24,75.CrossRefGoogle Scholar
  50. 50.
    A. R. Katritzky, J. Yao, M. Qi, G. Qiu, W. Bao, B. Yang, O. Denisko, S. Davis, J. Zhang, J. Appl. Polym. Sci., 2001, 81,85.CrossRefGoogle Scholar
  51. 51.
    K. Matsumura, R. Rajan, S. Ahmed, M. Jain, in Biopolymers for Medical Applications, Eds J. M. Ruso, P. V. Messina, CRC Press, Boca Raton, 2017, p.164.Google Scholar
  52. 52.
    T. Jiang, X. Yu, E. J. Carbone, C. Nelson, H. M. Kan, K. W. H. Lo, Int. J. Pharm., 2014,. 475,547.CrossRefGoogle Scholar
  53. 53.
    H. Xu, Q. Yao, C. Cai, J. Gou, Y. Zhang, H. Zhong, X. Tang, J. Control. Release, 2015, 199,84.CrossRefGoogle Scholar
  54. 54.
    Y. H. Lin, C. K. Chung, C. T. Chen, H. F. Liang, S. C. Chen, H. W. Sung, Biomacromolecules, 2005, 6, 1104.CrossRefGoogle Scholar
  55. 55.
    P. Zhang, E. Wagner, Top. Cur. Chem., 2017, 375,26.CrossRefGoogle Scholar
  56. 56.
    T. G. Park, J. H. Jeong, S. W. Kim, Adv. Drug Deliv. Rev., 2006, 58,467.CrossRefGoogle Scholar
  57. 57.
    L. Dekie, V. Toncheva, P. Dubruel, E. H. Schacht, L. Barrett, L. W. Seymour, J. Control. Release, 2000, 65,187.CrossRefGoogle Scholar
  58. 58.
    M. Suwa, A. Hashidzume, Y. Morishima, T. Nakato, M. Tomida, Macromolecules, 2000, 33, 7884.CrossRefGoogle Scholar
  59. 59.
    J. Vega-Chacón, M. I. A. Arbeláez, J. H. Jorge, R. F. C. Marques, M. Jafelicci, Mater. Sci. Eng. C, 2017, 77,366.CrossRefGoogle Scholar
  60. 60.
    K. Naoyama, T. Mori, Y. Katayama, A. Kishimura, Macromol. Rapid Commun., 2016, 37, 1087.CrossRefGoogle Scholar
  61. 61.
    E. Abbasi, S. F. Aval, A. Akbarzadeh, M. Milani, H. T. Nasrabadi, S. W. Joo, Y. Hanifehpour, K. Nejati-Koshki, R. Pashaei-Asl, Nanoscale Res. Lett., 2014, 9,247.CrossRefGoogle Scholar
  62. 62.
    M. J. Cloninger, Curr. Opin. Chem. Biol., 2002, 6,742.CrossRefGoogle Scholar
  63. 63.
    L. I. F. Moura, N. Martinho, L. C. Silva, T. S. Barata, S. Brocchini, H. F. Florindo, M. Zloh, J. Drug. Target., 2017, 10,1.Google Scholar
  64. 64.
    M. Buriuli, D. Verma, in Advances in Biomaterials for Biomedical Applications, Eds A. Tripathi, J. S. Melo, Springer, Singapore, 2017, p.45.Google Scholar
  65. 65.
    C. W. Hsieh, W. C. Lu, W. C. Hsieh, Y. P. Huang, C. H. Lai, W. C. Ko, LWT-Food Sci. Technol., 2009, 42,144.CrossRefGoogle Scholar
  66. 66.
    S. F. Zhang, C. Gao, S. Lü, J. He, M. Liu, C. Wu, Y. Liu, X. Zhang, Z. Liu, Colloids Surf. B Biointerfaces, 2017, 159,284.CrossRefGoogle Scholar
  67. 67.
    S. Mao, R. Li, W. Wang, W. Feng, P. Ji, Catalysts, 2017, 7, 217.CrossRefGoogle Scholar
  68. 68.
    Yu. A. Votchitseva, E. N. Efremenko, T. K. Aliev, S. D. Varfolomeev, Biochemistry (Moscow), 2006, 76,167.CrossRefGoogle Scholar
  69. 69.
    E. Efremenko, Y. Votchitseva, F. Plieva, I. Galaev, B. Mattiasson, Appl. Microb. Biotech., 2006, 70,558.CrossRefGoogle Scholar
  70. 70.
    E. Efremenko, I. Lyagin, D. Gudkov, S. Varfolomeev, Biocatalysis Biotransform., 2007, 25,359.CrossRefGoogle Scholar
  71. 71.
    E. Efremenko, A. Peregudov, N. Kildeeva, P. Perminov, S. Varfolomeev, Biocatalysis Biotransform., 2005, 23,103.CrossRefGoogle Scholar
  72. 72.
    M. Sirotkina, E. N. Efremenko, Appl. Microbiol. Biotechnol., 2014, 98, 2647.CrossRefGoogle Scholar
  73. 73.
    K.-W. Hong, C.-L. Koh, C.-K. Sam, W.-F. Yin, K.-G. Chan, Sensors, 2012, 12, 4661.CrossRefGoogle Scholar
  74. 74.
    S. B. Tay, W. S. Yew, Int. J. Mol. Sci., 2013, 14, 16570.CrossRefGoogle Scholar
  75. 75.
    X. C. Li, C. Wang, A. Mulchandani, X. Ge, ACS Chem. Biol., 2016, 11, 3122.CrossRefGoogle Scholar
  76. 76.
    O. V. Maslova, O. V. Senko, N. A. Stepanov, A. G. Aslanli, E. N. Efremenko, JJNPP, 2017, 12, e63649.CrossRefGoogle Scholar
  77. 77.
    O. Maslova, A. Aslanli, N. Stepanov, I. Lyagin, E. Efremenko, Catalysts, 2017, 7,271.CrossRefGoogle Scholar
  78. 78.
    S. Zalipsky, Adv. Drug. Deliv. Rev., 1995, 16,157.CrossRefGoogle Scholar
  79. 79.
    I. R. Khalil, A. T. Burns, I. Radecka, M. Kowalczuk, T. Khalaf, G. Adamus, M. P. Khechara, Int. J. Mol. Sci., 2017, 18, 313.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • O. V. Maslova
    • 1
  • O. V. Senko
    • 1
  • E. N. Efremenko
    • 1
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscow, Russian FederationRussia

Personalised recommendations