Advertisement

Russian Chemical Bulletin

, Volume 66, Issue 9, pp 1563–1568 | Cite as

Ferrocene-containing tri- and tetranuclear cyclic copper(i) and silver(i) pyrazolates

  • A. A. Titov
  • A. F. Smol´yakov
  • A. N. Rodionov
  • I. D. Kosenko
  • E. A. Guseva
  • Ya. V. Zubavichus
  • P. V. Dorovatovskii
  • O. A. Filippov
  • E. S. Shubina
Full Articles

Abstract

New tri- and tetranuclear macrocyclic silver(i) and copper(i) 3-ferrocenyl-5-(trifluoromethyl)pyrazolates were prepared: [{(3-((η5-C5H4)Fe(η5-C5H5))-5-(CF3)-Pz}M]3 (M = Cu (1), Ag (2)) and [{(3-(( η5-C5H4)Fe(η5-C5H5))-5-(CF3)-Pz}Cu]4 (3). The structures of compounds were established by X-ray diffraction analysis. In the crystalline state, a planar trinuclear silver-containing macrocycliс pyrazolate and a saddle-shaped tetranuclear copper-containing macrocycle are formed. The introduction of a bulky substituent, ferrocene, into the pyrazole ligand results in complete shielding of the acidic metal sites, which precludes the coordination of base molecules.

Key words

Group 11 metal pyrazolates copper(isilver(iferrocenylpyrazole 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. Omary, M. A. Rawashdeh-Omary, M. W. A. Gonser, O. Elbjeirami, T. Grimes, T. R. Cundari, H. V. K. Diyabalanage, C. S. P. Gamage, H. V. R. Dias, Inorg. Chem., 2005, 44, 8200.CrossRefGoogle Scholar
  2. 2.
    H. V. R. Dias, C. S. P. Gamage, J. Keltner, H. V. K. Diyabalanage, I. Omari, Y. Eyobo, N. R. Dias, N. Roehr, L. McKinney, T. Poth, Inorg. Chem.,2007, 46, 2979.CrossRefGoogle Scholar
  3. 3.
    H. V. R. Dias, H. V. K. Diyabalanage, M. G. Eldabaja, O. Elbjeirami, M. A. Rawashdeh-Omary, M. A. Omary, J. Am. Chem. Soc., 2005, 127, 7489.CrossRefGoogle Scholar
  4. 4.
    V. W. Yam, V. K. Au, S. Y. Leung, Chem. Rev., 2015, 115, 7589.CrossRefGoogle Scholar
  5. 5.
    S. Z. Zhan, M. Li, S. W. Ng, D. Li, Chem. Eur. J., 2013, 19, 10217.CrossRefGoogle Scholar
  6. 6.
    S. Z. Zhan, M. Li, X. P. Zhou, J. H. Wang, J. R. Yang, D. Li, Chem. Commun., 2011, 47, 12441.CrossRefGoogle Scholar
  7. 7.
    C. E. Kivi, D. T. Song, Dalton Trans., 2016, 45, 17087.CrossRefGoogle Scholar
  8. 8.
    T.Jozak, Y. Sun, Y. Schmitt, S. Lebedkin, M. Kappes, M. Gerhards, W. R. Thiel, Chem. Eur. J., 2011, 17, 3384.CrossRefGoogle Scholar
  9. 9.
    G. F. Gao, M. A. Li, S. Z. Zhan, Z. Lv, G. H. Chen, D. Li, Chem. Eur. J., 2011, 17, 4113.CrossRefGoogle Scholar
  10. 10.
    P. C. Duan, Z. Y. Wang, J. H. Chen, G. Yang, R. G. Raptis, Dalton Trans., 2013, 42, 14951.CrossRefGoogle Scholar
  11. 11.
    L. H. Li, J. X. Zhang, S. K. Jia, G. Yang, Trans. Metal. Chem., 2016, 41, 107.CrossRefGoogle Scholar
  12. 12.
    M. Veronelli, S. Dechert, A. Schober, S. Demeshko, F. Meyer, Eur. J. Inorg. Chem., 2017, 2, 446.CrossRefGoogle Scholar
  13. 13.
    M. Veronelli, S. Dechert, S. Demeshko, F. Meyer, Inorg. Chem., 2015, 54, 6917.CrossRefGoogle Scholar
  14. 14.
    V. N. Tsupreva, A. A. Titov, O. A. Filippov, A. N. Bilyachenko, A. F. Smol´yakov, F. M. Dolgushin, D. V. Agapkin, I. A. Godovikov, L. M. Epstein, E. S. Shubina, Inorg. Chem., 2011, 50, 3325.CrossRefGoogle Scholar
  15. 15.
    A. A. Titov, O. A. Filippov, E. A. Guseva, A. F. Smol´yakov, F. M. Dolgushin, L. M. Epstein, V. K. Belsky, E. S. Shubina, RSC Adv., 2014, 4, 8350.CrossRefGoogle Scholar
  16. 16.
    A. N. Rodionov, M. D. Gerasimova, E. Y. Osipova, A. A. Korlyukov, A. S. Peregudov, A. A. Simenel, Monatsh. Chem., 2017, 148, 925.CrossRefGoogle Scholar
  17. 17.
    A. N. Rodionov, A. A. Simenel, A. A. Korlyukov, V. V. Kachala, S. M. Peregudova, K. Y. Zherebker, E. Y. Osipova, J. Organomet. Chem., 2011, 696, 2108.CrossRefGoogle Scholar
  18. 18.
    H. V. Rasika Dias, S. A. Polach, Z. Wang, J Fluor. Chem., 2000, 103, 163.CrossRefGoogle Scholar
  19. 19.
    G. A. Ardizzoia, S. Cenini, G. La Monica, N. Masciocchi, M. Moret, Inorg. Chem., 1994, 33, 1458.CrossRefGoogle Scholar
  20. 20.
    K. Fujisawa, Y. Ishikawa, Y. Miyashita, K.-I. Okamoto, Inorg. Chim.Acta, 2010, 363, 2977.CrossRefGoogle Scholar
  21. 21.
    A. A. Titov, E. A. Guseva, O. A. Filippov, G. M. Babakhina, I. A. Godovikov, N. V. Belkova, L. M. Epstein, E. S. Shubina, J. Phys. Chem. A, 2016, 120, 7030.CrossRefGoogle Scholar
  22. 22.
    O. A. Filippov, A. A. Titov, E. A. Guseva, D. A. Loginov, A. F. Smol´yakov, F. M. Dolgushin, N. V. Belkova, L. M. Epstein, E. S. Shubina, Chem. Eur. J., 2015, 21, 13176.CrossRefGoogle Scholar
  23. 23.
    A. A. Titov, E. A. Guseva, A. F. Smol´yakov, F. M. Dolgushin, O. A. Philippov, I. E. Golub, A. I. Krylova, G. M. Babakhina, L. M. Epstein, E. S. Shubina, Russ. Chem. Bull., 2013, 62, 1829.CrossRefGoogle Scholar
  24. 24.
    A. A. Titov, O. A. Filippov, A. N. Bilyachenko, A. F. Smol´yakov, F. M. Dolgushin, V. K. Belsky, I. A. Godovikov, L. M. Epstein, E. S. Shubina, Eur. J. Inorg. Chem., 2012, 2012, 5554.CrossRefGoogle Scholar
  25. 25.
    V. N. Tsupreva, O. A. Filippov, A. A. Titov, A. I. Krylova, I. B. Sivaev, V. I. Bregadze, L. M. Epstein, E. S. Shubina, J. Organomet. Chem., 2009, 694, 1704.CrossRefGoogle Scholar
  26. 26.
    G. M. Sheldrick, SADABS, University of Göttingen, Germany, 2004.Google Scholar
  27. 27.
    G. M. Sheldrick, Acta Cryst., 2015, C71, 3.Google Scholar
  28. 28.
    O. V. Dolomanov, L. J. Bourhis, R. J., Gildea, J. A. K. Howard, H. Puschmann, J. Appl. Cryst., 2009, 42, 339.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  • A. A. Titov
    • 1
    • 2
  • A. F. Smol´yakov
    • 1
    • 2
  • A. N. Rodionov
    • 1
  • I. D. Kosenko
    • 1
  • E. A. Guseva
    • 1
  • Ya. V. Zubavichus
    • 3
  • P. V. Dorovatovskii
    • 3
  • O. A. Filippov
    • 1
  • E. S. Shubina
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Peoples´ Friendship University of RussiaMoscowRussian Federation
  3. 3.National Research Center “Kurchatov Institute”MoscowRussian Federation

Personalised recommendations