Advertisement

Russian Chemical Bulletin

, Volume 66, Issue 5, pp 813–820 | Cite as

Complexes of CuCl2 with G1-8S-Dec dendrimer. DFT calculations of the structure and physicochemical properties

  • A. I. AlexandrovEmail author
  • A. N. Tarasenkov
  • I. A. Alexandrov
  • I. Yu. Metlenkova
  • S. S. Kiselev
  • Yu. A. Borisov
Full Articles
  • 21 Downloads

Abstract

The calculations of the structure of dendrimer G1-8S-Dec (Si5C116H244S8) and its com-plexes with one, two, three, or four CuCl2 molecules were carried out for the first time using the density functional theory (DFT). The geometric structures of the complexes and the spin density distribution were determined. The states with the maximum multiplicity are most favorable for the complexes studied. The interaction energies of dendrimer G1-8S-Dec with CuCl2 molecules were calculated. Under standard conditions, the formation of complexes with a higher multiplicity of up to four CuCl2 molecules is most favorable. All the four considered complexes contain paramagnetic centers in which an unpaired electron is “local-ized” on the tetrahedra with the central Cu atom and two S atoms and two Cl atoms at the vertices of the tetrahedron.

Keywords

thioether derivatives of carbosilane dendrimers complexes with divalent cop-per chloride quantum chemical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A Tomalia, A. M Naylor, W. A. Goddart III, Angew. Chem., Int. Ed., 1990, 29, 138.CrossRefGoogle Scholar
  2. 2.
    R. M. Crooks, M. Zhao, Li Sun, V. Chechik, L. K. Yeung, Acc. Chem. Res., 2001, 34, 181.CrossRefGoogle Scholar
  3. 3.
    L. Balogh, D. A. Tomalia, J. Am. Chem. Soc., 1998, 120, 7355.CrossRefGoogle Scholar
  4. 4.
    Y. Niu, R.M. Crooks, Chem. Mater., 2003, 15, 3463.CrossRefGoogle Scholar
  5. 5.
    K. Esumi, A. Suzuki, N. Aihara, K. Usui, K. Torigoe, Langmuir, 1998, 14, 3157.CrossRefGoogle Scholar
  6. 6.
    X. Luo, T. Imae, J. Mater. Chem., 2007, 17, 567.CrossRefGoogle Scholar
  7. 7.
    P. N. Floriano, C. O. Noble IV, J. M. Schoonmaker, E. D. Poliakoff, R. L. McCarle, J. Am. Chem. Soc., 2001, 123, 10545.CrossRefGoogle Scholar
  8. 8.
    M. Zhao, L. Sun, R. M. Crooks, J. Am. Chem. Soc., 1998, 120, 4877.CrossRefGoogle Scholar
  9. 9.
    L. Zhou, D. H. Russell, M. Zhao, R. M. Crooks, Macromolecules, 2001, 34, 3567.CrossRefGoogle Scholar
  10. 10.
    Z. V. Feng, J. L. Lyon, J. S. Croley, R. M. Crooks, D. A. Van den Bout, K. J. Stevenson, J. Chem. Ed., 2009, 86, 368.CrossRefGoogle Scholar
  11. 11.
    C. Rissing, D. Y. Son, Organometallics, 2009, 28, 3167.CrossRefGoogle Scholar
  12. 12.
    L. Chen, T. E. Andersson, C. Rissing, S. Yang, S. Chen, D. Y. Son, J. Mater. Chem. B, 2013, 1, 116.CrossRefGoogle Scholar
  13. 13.
    A. Tarasenkov, E. Getmanova, E. Tatarinova, N. Surin, A. Muzafarov, Macromol. Symp., 2012, 317–318, 293.CrossRefGoogle Scholar
  14. 14.
    F. Tarazona-Vasquerz, H. B. Balbuena, J. Phys. Chem., Ser. B, 2004, 108, 15992.CrossRefGoogle Scholar
  15. 15.
    H. Wan, S. Li, T. A. Konovalova, J. Phys. Chem., Ser. C, 2008, 112, 1335.CrossRefGoogle Scholar
  16. 16.
    A. I. Alexandrov, I. Yu. Metlenkova, A. N. Tarasenkov, Yu. A. Borisov, Rus. Chem. Bull. (Int. Ed.), 2016, 65, 407 [Izv. Akad. Nauk, Ser. Khim., 2016, 407].CrossRefGoogle Scholar
  17. 17.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  18. 18.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev. B, 1988, 150, 785.CrossRefGoogle Scholar
  19. 19.
    P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270.CrossRefGoogle Scholar
  20. 20.
    T. H. Dunning, Jr., P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Plenum, New York, 1976, p. 1–28.Google Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Revision A.5, Gaussian, Inc., Pittsburgh PA, 1998.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • A. I. Alexandrov
    • 1
    Email author
  • A. N. Tarasenkov
    • 1
  • I. A. Alexandrov
    • 1
  • I. Yu. Metlenkova
    • 1
  • S. S. Kiselev
    • 2
  • Yu. A. Borisov
    • 2
  1. 1.N. S. Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of SciencesMoscowRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations