Advertisement

Russian Chemical Bulletin

, Volume 66, Issue 3, pp 409–417 | Cite as

Synthesis and properties of water-soluble silica nanoparticles

  • O. B. Gorbatsevich
  • D. N. Kholodkov
  • T. S. Kurkin
  • Yu. N. Malakhova
  • D. R. Strel’tsov
  • A. I. Buzin
  • V. V. KazakovaEmail author
  • A. M. Muzafarov
Full Articles

Abstract

Methods for synthesis and optimum conditions of the formation of stable water-soluble silica nanoparticles are presented. The silica nanoparticles were synthesized by the hydrolytic polycondensation of tetraethoxysilane using two methods: under alkaline conditions (Stöber´s method) or in an acetic acid medium followed by the modification by grafting triethylene oxide moieties on the particle surface. The structure of the modified silica nanoparticles was confirmed by the data of IR and NMR spectroscopy. Polydispersity was evaluated by gel permeation chromatography and dynamic light scattering. The formation and stability of Langmuir monolayers of the silica nanoparticles modified by triethylene oxide moieties were studied.

Key words

nanogels silica nanoparticles Langmuir—Blodgett films self-assembly of amphiphilic macromolecules 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. Dutta, A. Sarkar, Adv. Synth. & Catal., 2011, 353, 2814.CrossRefGoogle Scholar
  2. 2.
    J. Roeser, M. Kronstein, M. Litschauer, A. Thomas, M.-A. Neouze, Eur. J. Inorg. Chem., 2012, 32, 5305.CrossRefGoogle Scholar
  3. 3.
    S. C. Feifel, R. Ludwig, L. Gorton, F. Lisdat, Langmuir, 2012, 28, 9189.CrossRefGoogle Scholar
  4. 4.
    J.-R. Niu, X. Huo, F.-W. Zhang, H.-B. Wang, P. Zhao, W.-Q. Hu, J. Ma, R. Li, Chem. Cat. Chem., 2013, 5, 349.Google Scholar
  5. 5.
    B. Wu, Sh. Tang, M. Chen, N. Zheng, Chem. Commun., 2014, 50, 174.CrossRefGoogle Scholar
  6. 6.
    J. Chen, Y. Zhang, L. Tan, Y. Zhang, Ind. Eng. Chem. Res., 2011, 50, 4212.CrossRefGoogle Scholar
  7. 7.
    O. Aso, J. I. Eguiazabal, J. Nazabal, Composites Science and Technology, 2007, 67, 2854.CrossRefGoogle Scholar
  8. 8.
    C. S. Reddy, C. K. J. Das, J. Appl. Polym. Sci., 2006, 102, 2117.CrossRefGoogle Scholar
  9. 9.
    D. N. Bikiaris, G. Z. Papageorgiou, E. Pavlidou, N. Vouroutzis, P. Palatzoglou, G. P. Karayannidis, J. Appl. Polym. Sci., 2006, 100, 2684.CrossRefGoogle Scholar
  10. 10.
    X. Xu, B. Li, H. Lu, Z. Zhang, H. Wang, J. Appl. Polym. Sci., 2008, 107, 2007.CrossRefGoogle Scholar
  11. 11.
    J. S. Lim, S. M. Hong, D. K. Kim, S. S. Im, J. Appl. Polym. Sci., 2008, 107, 3598.CrossRefGoogle Scholar
  12. 12.
    M. Takamura, T. Yamauchi, N. Tsubokawa, J. Appl. Polym. Sci., 2012, 124, 3854.CrossRefGoogle Scholar
  13. 13.
    A. Zhiltsov, O. Gritsenko, V. Kazakova, O. Gorbatsevitch, N. Bessonova, A. Askadskii, O. Serenko, A. Muzafarov, J. Appl. Polym. Sci., 2015, 132, 41894.CrossRefGoogle Scholar
  14. 14.
    W.-J. Lin, W.-C. Chen, W.-C. Wu, Y.-H. Niu, A. K.-Y. Jen, Macromolecules, 2004, 37, 2335.CrossRefGoogle Scholar
  15. 15.
    J. K. Kim, W. Nakayama, S. K. Lee, ASME 2009 Inter PACK Conf., 1, 103.Google Scholar
  16. 16.
    M. Bardosova, M. E. Pemble, I. M. Povey, R. H. Tredgold, Adv. Mat., 2010, 22, 3104.CrossRefGoogle Scholar
  17. 17.
    H. Zou, S. Wu, J. Shen, Chem. Rev., 2008, 108, 3893.CrossRefGoogle Scholar
  18. 18.
    G. Agrawal, M. Schuerings, X. Zhu, A. Pich, Polymer, 2012, 53, 1189.CrossRefGoogle Scholar
  19. 19.
    T. K. Jain, I. Roy, T. K. De, A. N. Maitra, J. Am. Chem. Soc., 1998, 120, 11092.CrossRefGoogle Scholar
  20. 20.
    G. M. Whitesides, Nat. Biotechnol, 2003, 21, 1161.CrossRefGoogle Scholar
  21. 21.
    F. Alexis, E. M. Pridgen, R. Langer, O. C. Farokhzad, Hand. Exp. Pharmacol, 2010, 197, 55.CrossRefGoogle Scholar
  22. 22.
    W. Stober, A. Fink, E. Bohn, J. Colloid. Interface Sci., 1968, 26, 62.CrossRefGoogle Scholar
  23. 23.
    Z. Zhang, A. E. Berns, S. Willbold, J. Buitenhuis, J. Colloid. Interface Sci., 2007, 310, 446.CrossRefGoogle Scholar
  24. 24.
    O. E. Claassens, R. Menkveld, K. L. Harrison, Hum. Reprod., 1998, 13, 3139.CrossRefGoogle Scholar
  25. 25.
    O. D. Velev, K. Furusawa, K. Nagayama, Langmuir, 1996, 12, 2374.CrossRefGoogle Scholar
  26. 26.
    Y. Lin, H. Skaff, T. Emrick, A. D. Dinsmore, T. P. Russell, Science, 2003, 299, 226.CrossRefGoogle Scholar
  27. 27.
    H. Duan, D. Wang, D. G. Kurth, H. Mohwald, Angew. Chem., Int. Ed., 2004, 43, 5639.CrossRefGoogle Scholar
  28. 28.
    B. P. Binks, R. Murakami, Nat. Mater., 2006, 5, 865.CrossRefGoogle Scholar
  29. 29.
    A. Ding, W. A. Goedel, J. Am. Chem. Soc., 2006, 128, 4930.CrossRefGoogle Scholar
  30. 30.
    P. Pieranski, Phy. Rev. Lett., 1980, 45, 569.CrossRefGoogle Scholar
  31. 31.
    P. A. Kralchevsky, K. Nagayama, Particles at Fluid Interfaces and Membranes, Elsevier, Amsterdam, 2001.Google Scholar
  32. 32.
    B. P. Binks, J. H. Clint, Langmuir, 2002, 18, 1270.CrossRefGoogle Scholar
  33. 33.
    W. A. Goedel, Europhys. Lett., 2003, 62, 607.CrossRefGoogle Scholar
  34. 34.
    J. Y. Park, R. C. Advincula, Soft Matter, 2011, 7, 9829.CrossRefGoogle Scholar
  35. 35.
    B. A. Noskov, A. V. Akentiev, G. Loglio, R. Miller, J. Phys. Chem. B, 2000, 104, 7923.CrossRefGoogle Scholar
  36. 36.
    J. L. Logan, P. Masse, Y. Gnanou, D. Taton, R. S. Duran, Langmuir, 2005, 21, 7380.CrossRefGoogle Scholar
  37. 37.
    G. N. Njikang, L. Cao, M. Gauthier, Langmuir, 2008, 24, 12919.CrossRefGoogle Scholar
  38. 38.
    L. Deschenes, M. Bousmina, A. M. Ritcey, Langmuir, 2008, 24, 3699.CrossRefGoogle Scholar
  39. 39.
    S. Harirchian-Saei, M. C. P. Wang, B. D. Gates, M. G. Moffitt, Langmuir, 2010, 26, 5998.CrossRefGoogle Scholar
  40. 40.
    J. Gonzalez-Lopez, I. Sandez-Macho, A. Concheiro, C. Alvarez-Lorenzo, J. Phys. Chem. C, 2010, 114, 1181.CrossRefGoogle Scholar
  41. 41.
    P. M. Hansson, L. Skedung, P. M. Claesson, A. Swerin, J. Schoelkopf, P. A. C. Gane, M. W. Rutland, E. Thormann, Langmuir, 2011, 27, 8153.CrossRefGoogle Scholar
  42. 42.
    A. Detrich, M. Nyari, E. Volentiru, Z. Horvolgyi, Mat. Chem. Phys., 2013, 140, 602.CrossRefGoogle Scholar
  43. 43.
    I. Blute, R. J. Pugh, J. Pas, I. Callaghan, J. Coll. Interface Sci., 2009, 336, 584.CrossRefGoogle Scholar
  44. 44.
    S. Razavi, K. D. Cao, B. Lin, K. Y. C. Lee, R. S. Tu, I. Kretzschmar, Langmuir, 2015, 31, 7764.CrossRefGoogle Scholar
  45. 45.
    D. Zang, A. Stocco, D. Langevin, B. Wei, B. P. Binks, Phys. Chem. Chem. Phys., 2009, 11, 9522.CrossRefGoogle Scholar
  46. 46.
    G. Tolnai, A. Agod, M. Kabai-Faix, A. L. Kovacs, J. J. Ramsden, Z. Horvolgyi, J. Phys. Chem. B, 2003, 107, 11109.CrossRefGoogle Scholar
  47. 47.
    N. V. Voronina, I. B. Meshkov, V. D. Myakushev, N. V. Demchenko, T. V. Laptinskaya, A. M. Muzafarov, Nano-technologies in Russia, 2008, 5–6, 321 [Ros. Nanotekhnologii, 2008, 5–6, 127].CrossRefGoogle Scholar
  48. 48.
    V. V. Kazakova, A. S. Zhiltsov, O. B. Gorbatsevitch, I. B. Meshkov, M. V. Pletneva, N. V. Demchenko, G. V. Cherkaev, A. M. Muzafarov, J. Inorg. Organomet. Polym. Mat., 2012, 22, 564.CrossRefGoogle Scholar
  49. 49.
    A. S. Zhiltsov, K. L. Boldyrev, O. B. Gorbatsevitch, V. V. Kazakova, N. V. Demchenko, G. V. Cherkaev, A. M. Muzafarov, Silicon, 2014, 7, 165.CrossRefGoogle Scholar
  50. 50.
    N. V. Voronina, I. B. Meshkov, V. D. Myakushev, T. V. Laptinskaya, V. S. Papkov, M. I. Buzin, M. N. Il´ina, A. N. Ozerin, A. M. Muzafarov, J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 4310.CrossRefGoogle Scholar
  51. 51.
    A. M. Muzafarov, N. G. Vasilenko, E. A. Tatarinova, G. M. Ignat´eva, V. D. Myakushev, M. A. Obrezkova, I. B. Meshkov, N. V. Voronina, O. V. Novozhilov, Vysokomol. Soedin., Ser. C, 2011, 53, No. 7, 1217 [Polym. Sci. Ser. C, 2011, 53, No. 7].Google Scholar
  52. 52.
    A. V. Bystrova, N. V. Voronina, N. V. Gaevoi, E. V. Getmanova, I. B. Meshkov, O. B. Gorbatsevitch, A. M. Muzafarov, A. N. Ozerin, E. V. Egorova, E. A. Tatarinova, Nano-technologies in Russia, 2008, 5–6, 42 [Ros. Nanotekhnologii, 2008, 5–6, 42].Google Scholar
  53. 53.
    N. A. Novozhilova, Yu. N. Malakhova, M. I. Buzin, A. I. Buzin, E. A. Tatarinova, N. G. Vasilenko, A. M. Muzafarov, Russ. Chem. Bull., 2013, 62, 2514.CrossRefGoogle Scholar
  54. 54.
    P. V. Jemtshugov, A. S. Peregudov, Yu. N. Malakhova, M. I. Buzin, A. I. Buzin, O. I. Schegolikhina, A. M. Muzafarov, Russ. Chem. Bull., 2015, 64, 1394.CrossRefGoogle Scholar
  55. 55.
    V. A. Volkov, Kolloidnaya khimiya. Poverkhnostnye yavleniya i dispersnye sistemy [Colloidal Chemistry. Surface Phenomena in Disperse Systems], Lan´, Moscow, 2015, 659 (in Russian).Google Scholar
  56. 56.
    M. Winterhalter, H. Bürner, S. Marzinka, R. Benz, J. J. Kasianowicz, Biophys. J., 1995, 69, 1372.CrossRefGoogle Scholar
  57. 57.
    V. Rosilio, G. Albrecht, Y. Okumura, J. Sunamoto, A. Baszkin, Langmuir, 1996, 12, 2544.CrossRefGoogle Scholar
  58. 58.
    A. W. Adamson, Physical Chemistry of Surfaces, Intersci. Wiley, New York, 1967.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  • O. B. Gorbatsevich
    • 1
  • D. N. Kholodkov
    • 1
    • 2
  • T. S. Kurkin
    • 1
  • Yu. N. Malakhova
    • 3
    • 4
  • D. R. Strel’tsov
    • 1
    • 4
  • A. I. Buzin
    • 1
  • V. V. Kazakova
    • 1
    Email author
  • A. M. Muzafarov
    • 1
    • 2
  1. 1.N. S. Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussian Federation
  2. 2.A. N. Nesmeyanov of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  3. 3.Moscow Technological University, Institute of Fine Chemical TechnologiesRussian Academy of SciencesMoscowRussian Federation
  4. 4.National Research Centre “Kurchatov Institute”MoscowRussian Federation

Personalised recommendations