Advertisement

Russian Chemical Bulletin

, Volume 65, Issue 4, pp 1104–1109 | Cite as

Hydrolytic polycondensation of methylalkoxysilanes under pressure

  • A. A. Kalinina
  • D. N. Kholodkov
  • I. B. Meshkov
  • M. A. Pigaleva
  • I. V. Elmanovich
  • Ya. A. Molodtsova
  • M. O. Gallyamov
  • A. M. MuzafarovEmail author
Full Articles

Abstract

Hydrolytic polycondensation of methytrialkoxysilanes under the pressure in water and in carbonic acid was investigated. It is shown, that both processes proceed with full conversion of the monomer to form a low molecular soluble polymethylsilsesquioxanes. However, they have a different structure: in water branched compounds were produced and in carboxylic acid polycyclic compounds were synthesized. A type of alkoxy group affects the course of the process. In the case of hydrolytic polycondensation of methyltriethoxysilane under the pressure, unlike methyltrimethoxysilane, full conversion is observed only when additional homogenization of the reaction mixture takes place by vigorous stirring or increasing temperature of the process.

Keywords

methyltrialkoxysilane polymethylsilsesquioxane hydrolysis under pressure carbonic acid 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. M. Laine, J. A. Rahn, K. A. Youngdahl, F. Babonneau, M. L. Hoppe, Z. F. Zhang, J. F. Harrod, Chem. Mater., 1990, 2, 464.CrossRefGoogle Scholar
  2. 2.
    H. Xiang, L. Zhang, Z. Wang, X. Yu, Y. Long, X. Zhang, J. Xu, J. Coll. Interface Sci., 2011, 359, 296.CrossRefGoogle Scholar
  3. 3.
    J. H. Yim, M. R. Baklanov, D. W. Gidley, H. Peng, H. D. Jeong, L. Sun Pu, J. Phys. Chem. B, 2004, 108, 8953.CrossRefGoogle Scholar
  4. 4.
    Y. Abe, H. Hatano, T. Gunji, J. Polym. Sci. Ser. A, 1995, 33, 751.CrossRefGoogle Scholar
  5. 5.
    Y. Abe, K. Kagayama, N. Takamura, T. Gunji, T. Yoshihara, N. Takahashi, J. Non-Cryst. Solids, 2000, 261, 39.CrossRefGoogle Scholar
  6. 6.
    Y. Abe, T. Gunji, Prog. Polym. Sci., 2004, 29, 149.CrossRefGoogle Scholar
  7. 7.
    Pat. USSR 55899; Byull. Izobret. [Invention Bull.], 1939, No. 11 (in Russian).Google Scholar
  8. 8.
    JP 05125187; Chem. Abstr., 1993, 119, 183024.Google Scholar
  9. 9.
    E. V. Egorova, N. G. Vasilenko, N. V. Demchenko, E. A. Tatarinova, A. M. Muzafarov, Dokl. Chem. (Engl. Transl.), 2009, 424, 15 [Dokl. Acad. Nauk, 2009, 424, 200].Google Scholar
  10. 10.
    E. Parshina, N. Vasilenko, N. Demchenko, A. Muzafarov, The Fifth International Workshop of Silicon-Based Polymers (Montpellier, France, June 25—27, 2007), Montpellier, 2007, p.93.Google Scholar
  11. 11.
    K. A. Andrianov, L. M. Hananashvili, Technologiya elemntorganicheskih monomerov i polimerov [Technology of elementoorganic monomers and polymers] Khimiya, Moscow, 1973, 400 pp. (in Russian)Google Scholar
  12. 12.
    A. Arkhireeva, J. N. Hay, J. Mater. Chem., 2003, 13, 3122.CrossRefGoogle Scholar
  13. 13.
    S. Sankaraiah, J. M. Lee, J. H. Kim, S. W. Choi, Macromolecules, 2008, 41, 6195.CrossRefGoogle Scholar
  14. 14.
    M. V. Sobolevskii, O. A. Musovskaya, G. S. Popeleva, Svoistva i oblasti primeneniya kremniiorganicheskih productov [Properties and fields of applications of organosilicon products] Khimiya, Moscow, 1975, 295 pp. (in Russian).Google Scholar
  15. 15.
    R. H. Baney, M. Itoh, A. Sakakibara, T. Suzuki, Chem. Rev., 1995, 95, 1409.CrossRefGoogle Scholar
  16. 16.
    E. V. Egorova, N. G. Vasilenko, N. V. Demchenko, E. A. Tatarinova, A. M. Muzafarov, Dokl. Chem. (Engl. Transl.), 424, 15 [Dokl. Acad. Nauk, 2009, 424, 200].Google Scholar
  17. 17.
    S. E. Hunter, P. E. Savage, AIChE J., 2008, 54, 516.CrossRefGoogle Scholar
  18. 18.
    J. H. Li, Y. X. Xie, D. L. Yin, J. Org. Chem., 2003, 68, 9867.CrossRefGoogle Scholar
  19. 19.
    J. He, T. Wu, T. Jiang, X. Zhou, B. Hu, B. Han, Catal. Commun., 2008, 9, 2239.CrossRefGoogle Scholar
  20. 20.
    A. A. Kalinina, I. V. Elmanovich, M. N. Temnikov, M. A. Pigaleva, A. S. Zhiltsov, M. O. Gallyamov, A. M. Muzafarov, RSC Adv., 2014, 5, 5664.CrossRefGoogle Scholar
  21. 21.
    T. Ogawa, J. Watanabe, Y. Oshima, J. Supercrit. Fluids, 2008, 45, 80.CrossRefGoogle Scholar
  22. 22.
    T. Ogawa, J. Watanabe, Y. Oshima, J. Polym. Sci., Part A, 2009, 47, 2656.CrossRefGoogle Scholar
  23. 23.
    D. Migulin, E. Tatarinova, I. Meshkov, G. Cherkaev, N. Vasilenko, M. Buzin, A. Muzafarov, Polym. Int., 2015; DOI: 10.1002/pi.5029.Google Scholar
  24. 24.
    M. M. Sprung, F. O. Guenter, J. Am. Chem. Soc., 1955, 77, 6045.CrossRefGoogle Scholar
  25. 25.
    J. Chojnowski, S. Rubinsztajn, L. Wilczek, Macromolecules, 1987, 20, 2345.CrossRefGoogle Scholar
  26. 26.
    J. Chojnowski, S. Chrzczonowicz, Bull. Acad. Polon. Sci., Ser. Sci. Chim., 1966, 14, 17.Google Scholar
  27. 27.
    J. Chojnowski, Spec. publ. RCS, 1995, 166, 59.Google Scholar
  28. 28.
    A. Grzelka, J. Chojnowski, M. Cypryk, W. Fortuniak, P. C. Hupfield, R. G. Taylor, J. Organomet. Chem., 2004, 689, 705.CrossRefGoogle Scholar
  29. 29.
    L. F. Armaredo, D. D. Perkin, Purification of Laboratory Chemicals, Butterworth Heinemann, Oxford, 2002, p. 530.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. A. Kalinina
    • 1
    • 2
  • D. N. Kholodkov
    • 1
    • 2
  • I. B. Meshkov
    • 1
    • 2
  • M. A. Pigaleva
    • 2
    • 3
  • I. V. Elmanovich
    • 2
    • 3
  • Ya. A. Molodtsova
    • 2
  • M. O. Gallyamov
    • 2
    • 3
  • A. M. Muzafarov
    • 1
    • 2
    Email author
  1. 1.N. S. Enikolopov Institute of Synthetic Polymeric MaterialsRussian Academy of SciencesMoscowRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  3. 3.Faculty of PhysicsM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations