Advertisement

Russian Chemical Bulletin

, Volume 65, Issue 4, pp 1097–1103 | Cite as

Structure and properties of organic-inorganic nanocomposites based on polyaryleneetherketone

  • N. A. TebenevaEmail author
  • A. N. Tarasenkov
  • M. I. Buzin
  • V. V. Shaposhnikova
  • O. A. Serenko
  • A. M. Muzafarov
Full Articles

Abstract

Polyaryleneetherketone (PAEK) based composites obtained by in situ filling method have been investigated. Ethyl silicate, tris-(methyldiethoxysiloxy)iron and tetrakis-(methyldiethoxysiloxy)zirconium were used as the inorganic phase precursors. In the case of the last two precursors, the method of in situ formation of inorganic filler allows to obtain PAEK films containing inorganic nanoparticles, without resorting to the conditions of humidity of the surounding air. This is apparently due to a compatibility of the starting system PAEK—precursor and high reactivity of iron and zirconium methyldiethoxysiloxanes toward hydrolysis. Such filled systems are characterized by high elastic modulus and tensile strength at break, and also lower weight loss in thermo-oxidative degradation compared with the starting polymer.

Keywords

sol-gel method nanocomposites metallosiloxanes structure properties 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. V. Shaposhnikova, S. N. Salazkin, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 2213 [Izv. Acad. Nauk Ser. Khim., 2014, 2213].CrossRefGoogle Scholar
  2. 2.
    Yu. A. Michailin, Polym. Materiali [Polymer Materials], 2007, 5, 6 (in Russian).Google Scholar
  3. 3.
    A. M. Diez-Pascual, M. Naffakh, C. Marco, G. Ellis, M. A. Gomez-Fatou, Prog. Mater. Sci., 2012, 57, 1106.CrossRefGoogle Scholar
  4. 4.
    A. M. Diez-Pascual, M. A. Gomez-Fatou, F. Ania, A. Flores, Prog. Mater. Sci., 2015, 67, 1.CrossRefGoogle Scholar
  5. 5.
    B. A. Rozenberg, R. Tenne, Prog. Polym. Sci., 2008, 33, 40.CrossRefGoogle Scholar
  6. 6.
    H. Zou, S. Wu, J. Shen, Chem. Rev., 2008, 108, 3893.CrossRefGoogle Scholar
  7. 7.
    A. D. Pomogailo, Colloid J., 2005, 67(6), 658.CrossRefGoogle Scholar
  8. 8.
    V. Bounor-Legare, C. Angelloz, P. Blanc, P. Cassagnau, A. Michel, Polymer, 2004, 45, 1485.CrossRefGoogle Scholar
  9. 9.
    V. Bounor-Legare, P. Cassagnau, Prog. Polym. Sci., 2014, 39, 1473.CrossRefGoogle Scholar
  10. 10.
    T. Ogshi, Y. Chujo, Composite Interfaces, 2005, 11, 539.CrossRefGoogle Scholar
  11. 11.
    R. J. P. Corriu, D. Leclercq, Angew. Chem., Int. Ed. Engl., 1996, 35, 1420.CrossRefGoogle Scholar
  12. 12.
    V. V. Shaposhnikova, S. N. Salazkin, V. A. Sergeev, I. V. Blagodatskikh, L. V. Dubrovina, A. A. Sakunts, S.-S. A. Pavlova, Russ. Chem. Bull. (Int. Ed.), 1996, 45, 2397 [Izv. Acad. Nauk, Ser. Khim. 1996, 2526].CrossRefGoogle Scholar
  13. 13.
    Pat. RU 2293746; Buyl. Izobr. [Inventionś Bulletin], 2007, 5 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • N. A. Tebeneva
    • 1
    Email author
  • A. N. Tarasenkov
    • 1
  • M. I. Buzin
    • 2
  • V. V. Shaposhnikova
    • 2
  • O. A. Serenko
    • 2
  • A. M. Muzafarov
    • 2
  1. 1.N. S. Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of ScienceMoscowRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of ScienceMoscowRussian Federation

Personalised recommendations