Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Formation of negative ions via resonant low-energy electron capture by cysteine and cystine methyl esters

  • 41 Accesses

  • 2 Citations

Abstract

The processes of resonance low-energy free electron attachment to methyl esters of some sulfur-containing amino acids were studied. The long-lived molecular negative ions of cystine dimethyl ester formed in the valence state via the Feshbach nuclear excited resonance mechanism were detected by mass spectrometry. The reactions of disulfide bond dissociation were identified in an electron energy range of 0—1 eV. They can be considered as model reactions regarding processes of peptide decomposition due to the resonance interaction with low-energy electrons. Predissociation of short-lived molecular ions of cysteine methyl ester formed by capture of electrons with energies of ~1.6 eV is accompanied by the intra-ionic transfer of negative charge from the carbonyl group to the sulfur atom leading to the elimination from the latter of hydrogen atom.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    S. Gohlke, A. Rosa, E. Illenberger, F. Brüning, M. A. Huels, J. Chem. Phys., 2002, 116, 10164.

  2. 2.

    S. Ptasiñska, S. Denifl, P. Candori, S. Matejcik, P. Scheier, T. D. Märk, Chem. Phys. Lett., 2005, 403, 107.

  3. 3.

    P. Papp, J. Urban, S. Matejcik, M. Stano, O. Ingolfsson, J. Chem. Phys., 2006, 125, 204301.

  4. 4.

    S. Denifl, H. D. Flosadttir, A. Edtbauer, O. Inglfsson, T. D. Märk, P. Scheier, Eur. Phys. J., 2010, 60, 37.

  5. 5.

    P. Papp, P. Shchukin, S. Matejcik, J. Chem. Phys., 2010, 132, 014301.

  6. 6.

    J. Kocisek, P. Papp, P. Mach, Y. V. Vasilév, M. L. Deinzer, S. Matejcik, J. Phys. Chem. A, 2010, 114, 1677.

  7. 7.

    Y. V. Vasilév, B. J. Figard, V. G. Voinov, D. F. Barofsky, M. L. Deinzer, J. Am. Chem. Soc., 2006, 128, 5506.

  8. 8.

    H. Abdoul-Carime, E. Illenberger, Chem. Phys. Lett., 2004, 397, 309.

  9. 9.

    P. Sulzer, E. Alizadeh, A. Mauracher, T. D. Märk, P. Scheier, Int. J. Mass Spectrom., 2008, 277, 274.

  10. 10.

    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Chem. Phys. Lett., 2005, 402, 497.

  11. 11.

    M. V. Muftakhov, P. V. Shchukin, Russ. Chem. Bull. (Int. Ed.), 2010, 50, 896 [Izv. Akad. Nauk, Ser. Khim., 2010, 875].

  12. 12.

    M. V. Muftakhov, P. V. Shchukin, Phys. Chem. Chem. Phys., 2011, 13, 4600.

  13. 13.

    P. V. Shchukin, M. V. Muftakhov, A. V. Pogulay, Rapid Commun. Mass Spectrom., 2012, 26, 828.

  14. 14.

    M. V. Muftakhov, P. V. Shchukin, Russ. Chem. Bull. (Int. Ed.), 2014, 63, 642 [Izv. Akad. Nauk, Ser. Khim., 2014, 642].

  15. 15.

    Y. V. Vasilév, B. J. Figard, D. F. Barofsky, M. L. Deinzer, Int. J. Mass Spectrom., 2007, 268, 106.

  16. 16.

    V. A. Mazunov, P. V. Shchukin, R. V. Khatymov, M. V. Muftakhov, Mass-spektrometriya [Mass Spectrometry], 2006, 3, 11 (in Russian).

  17. 17.

    M. V. Muftakhov, Yu. V. Vasilév, V. A. Mazunov, Rapid Commun. Mass Spectrom., 1999, 13, 1104.

  18. 18.

    R. V. Khatymov, M. V. Muftakhov, V. A. Mazunov, Rapid Commun. Mass Spectrom., 2003, 17, 2327.

  19. 19.

    D. Edelson, J. E. Griffiths, K. B. McAffe, J. Chem. Phys., 1962, 73, 919.

  20. 20.

    J. Wu, X. Xu, J. Chem. Phys., 2007, 127, 214105.

  21. 21.

    H. Abdoul-Carime, S. Gohlke, E. Illenberger, Phys. Chem. Chem. Phys., 2004, 6, 161.

  22. 22.

    K. Aflatooni, B. Hitt, G. A. Gallup, P. D. Burrow, J. Chem. Phys., 2001, 115, 6489.

  23. 23.

    J. Kopyra, I. Szamrej, H. Abdoul-Carime, B. Farizonbc, M. Farizon, Phys. Chem. Chem. Phys., 2012, 14, 8000

  24. 24.

    B. J. Pepe, R. Fairman, Curr. Opin. Struct. Biol., 2009, 19, 483.

  25. 25.

    Y. S. Yew, G. Shekhawat, N. Wangoo, S. Mhaisalkar, C. R. Suri, V. P. Dravid, Y. M. Lam, Nanotechnology, 2011, 22, 215606.

  26. 26.

    M. V. Muftakhov, P. V. Shchukin, J. Anal. Chem., 2013, 68, 1200 [Mass Spectrometry, 2013, 10, 39].

  27. 27.

    Yu. V. Vasilév, R. R. Abzalimov, S. K. Nasibullaev, T. Drevello, Fullerene, Nanotubes and Carbon Nanostructures, 2004, 12, 229.

  28. 28.

    M. V. Muftakhov, Yu. V. Vasilév, R. V. Khatymov, V. A. Mazunov, V. V. Takhistov, O. V. Travkin, E. V. Yakovleva, Rapid Commun. Mass Spectrom., 1999, 13, 912.

  29. 29.

    A. Modelli, D. Jones, G. Distefano, M. Tronc, Chem. Phys. Lett., 1991, 181, 361.

Download references

Author information

Correspondence to M. V. Muftakhov.

Additional information

Published in Russian in Izvestiya Akademii Nauk. Seriya Khimicheskaya, No. 3, pp. 0658—0665, March, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muftakhov, M.V., Shchukin, P.V., Khatymov, R.V. et al. Formation of negative ions via resonant low-energy electron capture by cysteine and cystine methyl esters. Russ Chem Bull 65, 658–665 (2016). https://doi.org/10.1007/s11172-016-1352-9

Download citation

Key words

  • mass spectrometry
  • resonant electron capture
  • negative ions
  • cysteine methyl ester
  • cystine dimethyl ester
  • charge transfer