Advertisement

Russian Chemical Bulletin

, Volume 65, Issue 2, pp 407–413 | Cite as

Complexes of CuCl2 with low generation dendrimer G1-4S-Bu. Density functional calculations of structure and physicochemical properties

  • A. I. AlexandrovEmail author
  • I. Yu. Metlenkova
  • A. N. Tarasenkov
  • Yu. A. Borisov
Full Articles

Abstract

Density functional calculations (DFT) of a structure of dendrimer G1-4S-Bu (Si5C20H132S4) and its complexes with one, two, three, and four molecules of CuCl2 have been carried out for the first time. The geometric structures of the complexes and spin-density distribution have been determined. For the studied complexes the states with maximum multiplicity are the most favorable. The interaction energies of the dendrimer G1-4S-Bu with CuCl2 molecules have been calculated. It has been demonstrated that the formation of complexes with one or two molecules of CuCl2 is the most favorable under standard conditions, which is consistent with the experimental data. Paramagnetic centers exist in all four studied complexes, and the unpaired electron is «localized» in four atoms: Cu, S, Cl, and Cl.

Key words

thioether derivatives of carbosilane dendrimers complexes with copper chloride quantum chemical analysis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. A. Tomalia, A. M. Naylor, W. A. Goddart III, Angew. Chem., Int. Ed., 1990, 29, 138.CrossRefGoogle Scholar
  2. 2.
    R. M. Crooks, M. Zhao, Li Sun, V. Chechik, L. K. Yeung, Acc. Chem. Res., 2001, 34, 181.CrossRefGoogle Scholar
  3. 3.
    L. Balogh, D. A. Tomalia, J. Am. Chem. Soc., 1998, 120, 7355.CrossRefGoogle Scholar
  4. 4.
    Y. Niu, R. M. Crooks, Chem. Mater., 2003, 15, 3463.CrossRefGoogle Scholar
  5. 5.
    K. Esumi, A. Suzuki, N. Aihara, K. Usui, K. Torigoe, Langmuir, 1998, 14, 3157.CrossRefGoogle Scholar
  6. 6.
    X. Luo, T. Imae, J. Mater. Chem., 2007, 17, 567.CrossRefGoogle Scholar
  7. 7.
    P. N. Floriano, C. O. Noble IV, J. M. Schoonmaker, E. D. Poliakoff, R. L. McCarle, J. Am. Chem. Soc., 2001, 123, 10545.CrossRefGoogle Scholar
  8. 8.
    M. Zhao, L. Sun, R. M. Crooks, J. Am. Chem. Soc., 1998, 120, 4877.CrossRefGoogle Scholar
  9. 9.
    L. Zhou, D. H. Russell, M. Zhao, R. M. Crooks, Macromolecules, 2001, 34, 3567.CrossRefGoogle Scholar
  10. 10.
    Z. V. Feng, J. L. Lyon, J. S. Croley, R. M. Crooks, D. A. Vanden Bout, K. J. Stevenson, J. Chem. Ed., 2009, 86, 368.CrossRefGoogle Scholar
  11. 11.
    C. Rissing, D. Y. Son, Organometallics, 2009, 28, 3167.CrossRefGoogle Scholar
  12. 12.
    L. Chen, T. E. Andersson, C. Rissing, S. Yang, S. Chen, D. Y. Son, J. Mater. Chem. B, 2013, 1, 116.CrossRefGoogle Scholar
  13. 13.
    A. Tarasenkov, E. Getmanova, E. Tatarinova, N. Surin, A. Muzafarov, Macromol. Symp., 2012, 317—318, 293.CrossRefGoogle Scholar
  14. 14.
    F. Tarazona-Vasquerz, H. B. Balbuena, J. Phys. Chem., Ser. B, 2004, 108, 15992.CrossRefGoogle Scholar
  15. 15.
    F. Tarazona-Vasquerz, H. B. Balbuena, J. Phys. Chem., Ser. B, 2005, 109, 12480.CrossRefGoogle Scholar
  16. 16.
    H. Wan, S. Li, T. A. Konovalova, J. Phys. Chem., Ser. C, 2008, 112, 1335.CrossRefGoogle Scholar
  17. 17.
    A. D. Becke, J. Chem. Phys., 1993, 98, 5648.CrossRefGoogle Scholar
  18. 18.
    C. Lee, W. Yang, R. G. Parr, Phys. Rev., 1988, 150, 785.CrossRefGoogle Scholar
  19. 19.
    P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270.CrossRefGoogle Scholar
  20. 20.
    T. H. Dunning, Jr., P. J. Hay, in Modern Theoretical Chemistry, Ed. H. F. Schaefer III, Plenum, New York, 1976, p. 1—28.Google Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, V. G. Zakrzewski, J. A. Montgomery, Jr., R. E. Stratmann, J. C. Burant, S. Dapprich, J. M. Millam, A. D. Daniels, K. N. Kudin, M. C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G. A. Petersson, P. Y. Ayala, Q. Cui, K. Morokuma, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. Cioslowski, J. V. Ortiz, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, C. Gonzalez, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, J. L. Andres, C. Gonzalez, M. Head-Gordon, E. S. Replogle, J. A. Pople, Gaussian 98, Revision A.5, Gaussian, Inc., Pittsburgh PA, 1998.Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. I. Alexandrov
    • 1
    Email author
  • I. Yu. Metlenkova
    • 1
  • A. N. Tarasenkov
    • 1
  • Yu. A. Borisov
    • 2
  1. 1.N. S. Enikolopov Institute of Synthetic Polymer MaterialsRussian Academy of ScienceMoscowRussian Federation
  2. 2.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of ScienceMoscowRussian Federation

Personalised recommendations