Russian Chemical Bulletin

, Volume 65, Issue 1, pp 67–74 | Cite as

Molecular dynamics simulation of poly(butyl)carbosilane dendrimer melts at 600 K

  • A. N. Shishkin
  • D. A. Markelov
  • V. V. Matveev
Full Articles


The structural properties of melts of poly(butyl)carbosilane (PBC) dendrimers of the third (G3), fifth (G5), and sixth (G6) generations were studied by molecular dynamics simulation at 600 K. A substantial difference was found between the density of the melt of the G6 generation dendrimer and the densities of the melts of the G3 and G5 generation dendrimers. The obtained computer simulation results do not confirm the hypothesis that these differences are caused by physical entanglements between the branches of the neighboring dendrimers (which take place for G6 to a higher extent) and indicate, most likely, the minimization of the interdendrimer free volume due to a more regular packing.


poly(butyl)carbosilane dendrimer molecular dynamics radial density profile 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Frechet, D. Tomalia, Dendrimers and Other Dendritric Polymers, Wiley, New York, 2002.Google Scholar
  2. 2.
    A. M. Muzafarov, E. A. Rebrov, V. S. Papkov, Russ. Chem. Rev. (Engl. Transl.), 1991, 60, 1596 [Usp. Khim., 1991, 60, 1596].CrossRefGoogle Scholar
  3. 3.
    P. R. Dvornic, M. J. Owen, in Silicon-Containing Dendritic Polymers, Springer, New York, 2009, p. 21.Google Scholar
  4. 4.
    C. Dufes, I. F. Uchegbu, A. G. Schutzlein, in Polymers in Drug Delivery, Boca Raton, CRC Press, 2006, p. 195.Google Scholar
  5. 5.
    F. Vogtle, G. Richardt, N. Werner, Dendrimer Chemistry: Concepts, Syntheses, Properties, Applications, Wiley, Weinheim, 2009.Google Scholar
  6. 6.
    A. M. Muzafarov, N. G. Vasilenko, Priroda [Russ. Nature], 2011, 6 (in Russian).Google Scholar
  7. 7.
    B. Rosen, C. Wilson, D. Wilson, M. Peterca, M. Imam, V. Percec, Chem. Rev., 2009, 109, 6275.CrossRefGoogle Scholar
  8. 8.
    D. Astruc, E. Boisselier, C. Ornelas, Chem. Rev., 2010, 110, 1857.CrossRefGoogle Scholar
  9. 9.
    N. N. Smirnova, O. V. Stepanova, T. A. Bykova, A. V. Markin, A. M. Muzafarov, E. A. Tatarinova, V. D. Myakushev, Thermochimica Acta, 2006, 440, 188.CrossRefGoogle Scholar
  10. 10.
    A. S. Tereshchenko, G. S. Tupitsyna, E. A. Tatarinova, A. V. Bystrova, A. M. Muzafarov, N. N. Smirnova, A. V. Markin, Polym. Sci., Ser. B (Engl. Transl.), 2010, 52, 41 [Vysokomol. Soedin., Ser. B, 2010, 52, 132].CrossRefGoogle Scholar
  11. 11.
    N. N. Smirnova, A. V. Markin, Ya. S. Samosudova, G. M. Ignat’eva, A. M. Muzafarov, Russ. J. Phys. Chem. (Engl. Transl.), 2010, 84, 784 [Zh. Fiz. Khim., 2010, 84, 884].CrossRefGoogle Scholar
  12. 12.
    M. V. Mironova, A. V. Semakov, A. S. Tereshchenko, E. A. Tatarinova, E. V. Getmanova, A. M. Muzafarov, V. G. Kulichikhin, Polym. Sci., Ser. B (Engl. Transl.), 2010, 52, 1156 [Vysokomol. Soedin., Ser. B, 2010, 52, 1960].Google Scholar
  13. 13.
    N. Zacharopoulos, L. G. Economou, Macromolecules, 2002, 35, 1814.CrossRefGoogle Scholar
  14. 14.
    K. Karatasos, Macromolecules, 2005, 38, 4472.CrossRefGoogle Scholar
  15. 15.
    S. L. Mayo, B. D. Olafson, W. A. Goddard, J. Phys. Chem., 1990, 94, 8897.CrossRefGoogle Scholar
  16. 16. Scholar
  17. 17.
    B. Hess, C. Kutzner, D. van der Spoel, E. Lindahl, J. Chem. Theory Comput., 2008, 4, 435.CrossRefGoogle Scholar
  18. 18.
    H. Berendsen, J. Postma, W. Gunsteren, A. Dinola, J. Haak, J. Chem. Phys., 1984, 81, 3684.CrossRefGoogle Scholar
  19. 19.
    G. Bussi, D. Donadio, M. Parrinello, J. Chem. Phys., 2007, 126, 014101.CrossRefGoogle Scholar
  20. 20.
    B. Hess, H. Bekker, H. Berendsen, J. Fraaije, J. Comput. Chem., 1997, 18, 1463.CrossRefGoogle Scholar
  21. 21.
    F. Jensen, Introduction to Computational Chemistry, John Wiley and Sons, West Susex, 2007.Google Scholar
  22. 22.
    A. V. Arbuznikov, J. Struct. Chem. (Engl. Transl.), 2007, 48, S1 [Zh. Strukt. Khim., 2007, 48, 5].Google Scholar
  23. 23.
    J. Perdew, Y. Wang, Phys. Rev., 1992, 45, 13244.CrossRefGoogle Scholar
  24. 24.
    J. Wang, P. Cieplak, P. Kollman, J. Comput. Chem., 2000, 21, 1049.CrossRefGoogle Scholar
  25. 25.
    T. Darden, D. York, L. Pedersen, J. Chem. Phys., 1993, 98, 10089.CrossRefGoogle Scholar
  26. 26.
    E. A. Tatarinova, E. A. Rebrov, V. D. Myakushev, I. B. Meshkov, N. V. Demchenko, A. V. Bystrova, O. V. Lebedeva, A. M. Muzafarov, Russ. Chem. Bull. (Engl. Transl.), 2004, 53, 2591 [Izv. Akad. Nauk, Ser. Khim., 2004, 2484].CrossRefGoogle Scholar
  27. 27.
    M. A. Mazo, M. Y. Shamaev, N. K. Balabaev, A. A. Darinskii, I. M. Neelov, Phys. Chem. Chem. Phys., 2004, 6, 1285.CrossRefGoogle Scholar
  28. 28.
    J. S. Klos, J. U. Sommer, Polymer Sci. Ser. C, 2013, 55, 125.CrossRefGoogle Scholar
  29. 29.
    J. Rudnick, G. Gaspari, J. Phys. A, 1986, 19, 191.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • A. N. Shishkin
    • 1
  • D. A. Markelov
    • 1
    • 2
    • 3
  • V. V. Matveev
    • 1
  1. 1.Faculty of PhysicsSt. Petersburg State UniversitySt. PetersburgRussian Federation
  2. 2.Institute of Macromolecular CompoundsRussian Academy of SciencesSt. PetersburgRussian Federation
  3. 3.St. Petersburg National Research University of Informational Technologies, Mechanics, and OpticsSt. PetersburgRussian Federation

Personalised recommendations