Advertisement

Russian Chemical Bulletin

, Volume 64, Issue 10, pp 2459–2472 | Cite as

Study of complexation of styrylheterocycles with cavitands by spectroscopic methods

  • A. I. Vedernikov
  • N. A. Lobova
  • N. A. Aleksandrova
  • S. P. Gromov
Article

Abstract

The complexation of crown-containing or dimethoxy-substituted styrylheterocycles (guest molecules) with β-cyclodextrin (β-CD), mono-6-amino-6-deoxy-β-cyclodextrin hydrochloride (β-CD-NH3Cl), and cucurbit[7]uril (CB[7]) (host molecules, cavitands) in water and water–acetonitrile solvent mixtures was studied by electronic and 1H NMR spectroscopy. Spectrophotometric, fluorescence, and 1H NMR titration, as well as 2D NMR experiments, were used to infer spectral properties, 1: 1 stoichiometry, a pseudorotaxane structure, and stability of the inclusion complexes formed. The solvent composition, the size and the charge of the heterocyclic moiety, and the size of the crown ether fragment of the guest were found to exert influence on the stability of the complexes. A synergistic effect upon complexation of 18-crown-6-containing styrylpyridines with β-CD-NH3Cl was found to be in place due to a cooperative contribution of encapsulation of the conjugated part of the guest by the cavitand cavity and hydrogen bonding between the crown ether fragment and the ammonium group. A photoinduced protonation of neutral styrylpyridines in water was demonstrated.

Keywords

styrylheterocycles cyclodextrins cucurbituril crown ethers inclusion complexes structure of complexes electronic spectroscopy NMR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. W. Steed, J. L. Atwood, Supramolecular Chemistry, Wiley, Chichester–New York–Weinheim, 2000.Google Scholar
  2. 2.
    K. A. Connors, Chem. Rev., 1997, 97, 1325.CrossRefGoogle Scholar
  3. 3.
    Cyclodextrins and Their Complexes, Ed. H. Dodziuk, Wiley–VCH, Weinheim, 2006.Google Scholar
  4. 4.
    W. L. Mock, Comprehensive Supramolecular Chemistry, Eds J. L. Atwood, J. E. D. Davies, D. D. MacNicol, F. Vögtle, Pergamon, Oxford, 1996, vol. 2, 477.Google Scholar
  5. 5.
    O. A. Gerasko, D. G. Samsonenko, V. P. Fedin, Russ. Chem. Rev., 2002, 71, 741.CrossRefGoogle Scholar
  6. 6.
    J. W. Lee, S. Samal, N. Selvapalam, H.-J. Kim, K. Kim, Acc. Chem. Res., 2003, 36, 621.CrossRefGoogle Scholar
  7. 7.
    J. Lagona, P. Mukhopadhyay, S. Chakrabarti, L. Isaacs, Angew. Chem., Int. Ed., 2005, 44, 4844.CrossRefGoogle Scholar
  8. 8.
    L. Isaacs, Chem. Commun., 2009, 619.Google Scholar
  9. 9.
    W. M. Nau, M. Florea, K. I. Assaf, Isr. J. Chem., 2011, 51, 559.CrossRefGoogle Scholar
  10. 10.
    L. Isaacs, Isr. J. Chem., 2011, 51, 578.CrossRefGoogle Scholar
  11. 11.
    K. I. Assaf, W. M. Nau, Chem. Soc. Rev., 2015, 44, 394.CrossRefGoogle Scholar
  12. 12.
    R. Breslow, S. D. Dong, Chem. Rev., 1998, 98, 1997.CrossRefGoogle Scholar
  13. 13.
    A. R. Hedges, Chem. Rev., 1998, 98, 2035.CrossRefGoogle Scholar
  14. 14.
    Cyclodextrin Materials. Photochemistry, Photophysics and Photobiology, Ed. A. Douhal, Elsevier, Amsterdam–London–New York, 2006.Google Scholar
  15. 15.
    A. Harada, A. Hashidzume, Y. Takashima, Adv. Polym. Sci., 2006, 201, 1.CrossRefGoogle Scholar
  16. 16.
    K. Kim, N. Selvapalam, Y. H. Ko, K. M. Park, D. Kim, J. Kim, Chem. Soc. Rev., 2007, 36, 267.CrossRefGoogle Scholar
  17. 17.
    T. Ogoshi, A. Harada, Sensors, 2008, 8, 4961.CrossRefGoogle Scholar
  18. 18.
    Molecular Encapsulation. Organic Reactions in Constrained Systems, Eds U. H. Brinker, J.-L. Mieusset, Wiley, Chichester, 2010.Google Scholar
  19. 19.
    R. N. Dsouza, U. Pischel, W. M. Nau, Chem. Rev., 2011, 111, 7941.CrossRefGoogle Scholar
  20. 20.
    A. C. Bhasikuttan, H. Pal, J. Mohanty, Chem. Commun., 2011, 47, 9959.CrossRefGoogle Scholar
  21. 21.
    D. Das, O. A. Scherman, Isr. J. Chem., 2011, 51, 537.CrossRefGoogle Scholar
  22. 22.
    S. Walker, R. Oun, F. J. McInnes, N. J. Wheate, Isr. J. Chem., 2011, 51, 616.CrossRefGoogle Scholar
  23. 23.
    G. Parvari, O. Reany, E. Keinan, Isr. J. Chem., 2011, 51, 646.CrossRefGoogle Scholar
  24. 24.
    B. C. Pemberton, R. Raghunathan, S. Volla, J. Sivaguru, Chem. Eur. J., 2012, 18, 12178.CrossRefGoogle Scholar
  25. 25.
    E. Masson, X. Ling, R. Joseph, L. Kyeremeh-Mensah, X. Lu, RSC Adv., 2012, 2, 1213.CrossRefGoogle Scholar
  26. 26.
    S. Zarra, D. M. Wood, D. A. Roberts, J. R. Nitschke, Chem. Soc. Rev., 2015, 44, 419.CrossRefGoogle Scholar
  27. 27.
    S. P. Gromov, A. I. Vedernikov, L. G. Kuźmina, D. V. Kondratuk, S. K. Sazonov, Yu. A. Strelenko, M. V. Alfimov, J. A. K. Howard, Eur. J. Org. Chem., 2010, 2587.Google Scholar
  28. 28.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, M. V. Fomina, T. G. Vershinnikova, M. V. Alfimov, Russ. Chem. Bull. (Int. Ed.), 2004, 53, 2525 [Izv. Akad. Nauk, Ser. Khim., 2004, 2420].CrossRefGoogle Scholar
  29. 29.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, M. V. Fomina, T. G. Vershinnikova, V. Yu. Rudyak, M. V. Alfimov, Russ. Chem. Bull. (Int. Ed.), 2007, 56, 281 [Izv. Akad. Nauk, Ser. Khim., 2007, 272].CrossRefGoogle Scholar
  30. 30.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, A. I. Vedernikov, M. V. Fomina, T. G. Vershinnikova, V. Yu. Gak, N. A. Lobova, V. Yu. Rudyak, M. V. Alfimov, Russ. Chem. Bull. (Int. Ed.), 2010, 59, 941 [Izv. Akad. Nauk, Ser. Khim., 2010, 919].CrossRefGoogle Scholar
  31. 31.
    S. P. Gromov, V. B. Nazarov, V. G. Avakyan, M. V. Fomina, A. I. Vedernikov, L. G. Kuźmina, T. G. Vershinnikova, N. A. Lobova, V. Yu. Rudyak, M. V. Alfimov, J. A. K. Howard, J. Photochem. Photobiol. A: Chem., 2011, 217, 87.CrossRefGoogle Scholar
  32. 32.
    V. B. Nazarov, V. G. Avakyan, M. V. Fomina, A. I. Vedernikov, M. V. Alfimov, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2013, 62, 2150 [Izv. Akad. Nauk, Ser. Khim., 2013, 2150].CrossRefGoogle Scholar
  33. 33.
    Yu. V. Fedorov, O. A. Fedorova, E. N. Andryukhina, S. P. Gromov, M. V. Alfimov, J. J. Aaron, J. Incl. Phen. Macrocycl. Chem., 2004, 49, 283.CrossRefGoogle Scholar
  34. 34.
    L. G. Kuzmina, A. I. Vedernikov, N. A. Lobova, J. A. K. Howard, Yu. A. Strelenko, V. P. Fedin, M. V. Alfimov, S. P. Gromov, New J. Chem., 2006, 30, 458.CrossRefGoogle Scholar
  35. 35.
    A. I. Vedernikov, N. A. Lobova, L. G. Kuźmina, Yu. A. Strelenko, J. A. K. Howard, M. V. Alfimov, S. P. Gromov, Ros. nanotekhnologii [Nanotechnologies in Russia], 2007, 2, No. 5–6, 56 (in Russian).Google Scholar
  36. 36.
    A. I. Vedernikov, N. A. Lobova, L. G. Kuźmina, J. A. K. Howard, Yu. A. Strelenko, M. V. Alfimov, S. P. Gromov, J. Mol. Struct., 2011, 989, 114.CrossRefGoogle Scholar
  37. 37.
    N. Kh. Petrov, D. A. Ivanov, D. V. Golubkov, S. P. Gromov, M. V. Alfimov, Chem. Phys. Lett., 2009, 480, 96.CrossRefGoogle Scholar
  38. 38.
    L. S. Atabekyan, A. I. Vedernikov, V. G. Avakyan, N. A. Lobova, S. P. Gromov, A. K. Chibisov, J. Photochem. Photobiol. A: Chem., 2013, 253, 52.CrossRefGoogle Scholar
  39. 39.
    D. A. Ivanov, N. Kh. Petrov, E. A. Nikitina, M. V. Basilevsky, A. I. Vedernikov, S. P. Gromov, M. V. Alfimov, J. Phys. Chem. A, 2011, 115, 4505.CrossRefGoogle Scholar
  40. 40.
    D. A. Ivanov, N. Kh. Petrov, M. V. Alfimov, A. I. Vedernikov, S. P. Gromov, High Energy Chem. (Engl. Transl.), 2014, 48, 253 [Khim. Vysokikh Energii, 2014, 48, 295].CrossRefGoogle Scholar
  41. 41.
    D. A. Ivanov, N. Kh. Petrov, A. A. Ivanov, M. V. Alfimov, A. I. Vedernikov, S. P. Gromov, Chem. Phys. Lett., 2014, 610–611, 91.CrossRefGoogle Scholar
  42. 42.
    R. M. Izatt, K. Pawlak, J. S. Bradshaw, Chem. Rev., 1991, 91, 1721.CrossRefGoogle Scholar
  43. 43.
    D. W. Armstrong, L. W. Chang, S. S. C. Chang, J. Chromatogr. A, 1998, 793, 115.CrossRefGoogle Scholar
  44. 44.
    T. Koide, K. Ueno, J. Chromatogr. A, 2001, 923, 229.CrossRefGoogle Scholar
  45. 45.
    H.-J. Buschmann, E. Cleve, K. Jansen, A. Wego, E. Schollmeyer, Mat. Sci. Eng. C, 2001, 14, 35.CrossRefGoogle Scholar
  46. 46.
    Y. Liu, Y.-W. Yang, L. Li, Y. Chen, Org. Biomol. Chem., 2004, 2, 1542.CrossRefGoogle Scholar
  47. 47.
    Y. Liu, Z.-Y. Duan, Y. Chen, J.-R. Han, L. Cui, Org. Biomol. Chem., 2004, 2, 2359.CrossRefGoogle Scholar
  48. 48.
    W. Sliwa, T. Girek, Chem. Heterocycl. Compds, 2005, 41, 1343.CrossRefGoogle Scholar
  49. 49.
    H.-J. Buschmann, L. Mutihac, E. Schollmeyer, J. Incl. Phen. Macrocycl. Chem., 2005, 53, 85.CrossRefGoogle Scholar
  50. 50.
    A. Späth, B. König, Beilstein J. Org. Chem., 2010, 6, No. 32.CrossRefGoogle Scholar
  51. 51.
    B. Gierczyk, B. Nowak-Wydra, G. Schroeder, Magn. Reson. Chem., 2010, 48, 471.Google Scholar
  52. 52.
    A.-J. Tong, A. Yamauchi, T. Hayshita, Z.-Y. Zhang, B. D. Smith, N. Teramae, Anal. Chem., 2001, 73, 1530.CrossRefGoogle Scholar
  53. 53.
    Y. Wang, Z. Zhang, L. X. Mu, H. S. Mao, Y. F. Wang, W. J. Jin, Luminescence, 2005, 20, 339.CrossRefGoogle Scholar
  54. 54.
    J. H. Jung, S. J. Lee, J. S. Kim, W. S. Lee, Y. Sakata, T. Kaneda, Org. Lett., 2006, 8, 3009.CrossRefGoogle Scholar
  55. 55.
    O. A. Fedorova, E. Yu. Chernikova, Yu. V. Fedorov, E. N. Gulakova, A. S. Peregudov, K. A. Lyssenko, G. Jonusauskas, L. Isaacs, J. Phys. Chem. B, 2009, 113, 10149.CrossRefGoogle Scholar
  56. 56.
    T. Hayashita, D. Fujita, T. Hashimoto, A. Endo, H. Zhao, K. Odagiri, S. Takahashi, M. M. Mohamad, N. Teramae, Arkivoc, 2010, 7, 203.Google Scholar
  57. 57.
    E. Chernikova, D. Berdnikova, Yu. Fedorov, O. Fedorova, A. Peregudov, L. Isaacs, Chem. Commun., 2012, 48, 7256.CrossRefGoogle Scholar
  58. 58.
    E. Yu. Chernikova, D. V. Berdnikova, Yu. V. Fedorov, O. A. Fedorova, Makrogeterotsikly [Macroheterocycles], 2013, 6, 234 (in Russian).CrossRefGoogle Scholar
  59. 59.
    S. V. Tkachenko, E. Yu. Chernikova, E. N. Gulakova, I. A. Godovikov, Yu. V. Fedorov, O. A. Fedorova, Protect. Metals Phys. Chem. Surf. (Engl. Transl.), 2013, 49, 181 [Fizikokhimiya poverkhnosti i zashchita materialov, 2013, 49, 186].CrossRefGoogle Scholar
  60. 60.
    O. A. Fedorova, E. N. Andryukhina, M. M. Mashura, S. P. Gromov, Arkivoc, 2005, 15, 12.Google Scholar
  61. 61.
    L. G. Kuźmina, A. I. Vedernikov, N. A. Lobova, S. K. Sazonov, S. S. Basok, J. A. K. Howard, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 1192 [Izv. Akad. Nauk, Ser. Khim., 2009, 1161].CrossRefGoogle Scholar
  62. 62.
    L. G. Kuźmina, A. I. Vedernikov, N. A. Lobova, A. V. Churakov, J. A. K. Howard, M. V. Alfimov, S. P. Gromov, New J. Chem., 2007, 31, 980.CrossRefGoogle Scholar
  63. 63.
    A. I. Vedernikov, L. G. Kuźmina, S. K. Sazonov, N. A. Lobova, P. S. Loginov, A. V. Churakov, Yu. A. Strelenko, J. A. K. Howard, M. V. Alfimov, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2007, 56, 1860 [Izv. Akad. Nauk, Ser. Khim., 2007, 1797].CrossRefGoogle Scholar
  64. 64.
    A. I. Vedernikov, S. P. Gromov, N. A. Lobova, L. G. Kuźmina, Yu. A. Strelenko, J. A. K. Howard, M. V. Alfimov, Russ. Chem. Bull. (Int. Ed.), 2005, 54, 1954 [Izv. Akad. Nauk, Ser. Khim., 2005, 1896].CrossRefGoogle Scholar
  65. 65.
    L. G. Kuźmina, A. I. Vedernikov, S. K. Sazonov, N. A. Lobova, A. V. Churakov, E. Kh. Lermontova, J. A. K. Howard, M. V. Alfimov, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2011, 60, 1734 [Izv. Akad. Nauk, Ser. Khim., 2011, 1708].CrossRefGoogle Scholar
  66. 66.
    H. S. Banu, A. Lalitha, K. Pitchumani, C. Srinivasan, Chem. Commun., 1999, 607.Google Scholar
  67. 67.
    Y.-L. Zhao, D. Benítez, I. Yoon, J. F. Stoddart, Chem. Asian J., 2009, 4, 446.CrossRefGoogle Scholar
  68. 68.
    J. Szejtli, Chem. Rev., 1998, 98, 1743.CrossRefGoogle Scholar
  69. 69.
    P. Gans, A. Sabatini, A. Vacca, Talanta, 1996, 43, 1739.CrossRefGoogle Scholar
  70. 70.
    H.-J. Schneider, F. Hacket, V. Rüdiger, Chem. Rev., 1998, 98, 1755.CrossRefGoogle Scholar
  71. 71.
    M. V. Rekharsky, Y. Inoue, Chem. Rev., 1998, 98, 1875.CrossRefGoogle Scholar
  72. 72.
    A. I. Vedernikov, E. N. Ushakov, N. A. Lobova, A. A. Kiselev, M. V. Alfimov, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2005, 54, 666 [Izv. Akad. Nauk, Ser. Khim., 2005, 656].CrossRefGoogle Scholar
  73. 73.
    H.-J. Buschmann, L. Mutihac, K. Jansen, J. Incl. Phen. Macrocycl. Chem., 2001, 39, 1.CrossRefGoogle Scholar
  74. 74.
    C. Frassineti, S. Ghelli, P. Gans, A. Sabatini, M. S. Moruzzi, A. Vacca, Anal. Biochem., 1995, 231, 374.CrossRefGoogle Scholar
  75. 75.
    D. D. Perrin, Dissociation Constants of Organic Bases in Aqueous Solution, Butterworths, London, 1965.Google Scholar
  76. 76.
    A. Day, A. P. Arnold, R. J. Blanch, B. Snushall, J. Org. Chem., 2001, 66, 8094.CrossRefGoogle Scholar
  77. 77.
    D. Bardelang, K. A. Udachin, D. M. Leek, J. C. Margeson, G. Chan, C. I. Ratcliffe, J. A. Ripmeester, Cryst. Growth Des., 2011, 11, 5598.CrossRefGoogle Scholar
  78. 78.
    M. M. Conn, J. Rebek, Chem. Rev., 1997, 97, 1647.CrossRefGoogle Scholar
  79. 79.
    C. Li, J. Li, X. Jia, Org. Biomol. Chem., 2009, 7, 2699.CrossRefGoogle Scholar
  80. 80.
    M. V. Rekharsky, R. N. Goldberg, F. P. Schwarz, Y. B. Tewari, P. D. Ross, Y. Yamashoji, Y. Inoue, J. Am. Chem. Soc., 1995, 117, 8830.CrossRefGoogle Scholar
  81. 81.
    Z. Yi, C. Zhao, Z. Huang, H. Chen, J. Yu, Phys. Chem. Chem. Phys., 1999, 1, 441.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • A. I. Vedernikov
    • 1
  • N. A. Lobova
    • 1
  • N. A. Aleksandrova
    • 1
  • S. P. Gromov
    • 1
  1. 1.Photochemistry CenterRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations