Advertisement

Russian Chemical Bulletin

, Volume 64, Issue 8, pp 1896–1900 | Cite as

Conjugation effects and optical spectra of 1,2-diphosphole cycloadducts

  • T. I. BurganovEmail author
  • S. A. Katsyuba
  • A. A. Zagidullin
  • E. E. Zvereva
  • V. A. Miluykov
  • O. G. Sinyashin
Full Articles

Abstract

Quantum chemical calculations and a comparative analysis of Raman spectra of 3,4,5-triphenyl-1-propyl-1,2-diphosphole (1), anti-endo-4,7,8,9-tetraphenyl-10-propyl-4-aza-1,10-diphosphatricyclo[5.2.1.02,6]deca-8-ene-3,5-dione (2) and 1,2,6,7-tetraphospha-3,4,5,8,9,10-hexaphenyltricyclo[5.3.0.02,6]deca-3,9-diene (3) made it possible to explain considerable differences in the UV absorption spectra of these compounds. The phenyl groups in the compounds under study, despite the steric factor, are conjugated with the π-system of the heterocycle, which in the case of diphosphole 1 comprises π-electrons of the C=C and P=C bonds. The disturbance of this diene system in molecules 2 and 3 decreases the effective length of conjugation of phenyl groups with the attached double bonds of the phosphorus-containing ring, that results in the hypsochromic shift of the π—π* electron transition bands in the UV absorption spectrum from 411 to 312 nm. The formation in molecule 3 of the four-membered ring P4, which is a new chromophore group, leads to the appearance of an additional absorption band with the maximum at ∼342 nm.

Key words

phospholes phosphorus heterocycles Raman spectroscopy UV spectroscopy quantum chemical calculations conjugation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Baumgartner, R. Reau, Chem. Rev., 2006, 106, 4681.CrossRefGoogle Scholar
  2. 2.
    M. Hissler, C. Lescop, R. Reau, J. Organomet. Chem., 2005, 690, 2482.CrossRefGoogle Scholar
  3. 3.
    M. Hissler, P. W. Dyer, R. Reau, Top. Curr. Chem., 2005, 250, 127.Google Scholar
  4. 4.
    C. Hay, M. Hissler, C. Fischmeister, J. Rault-Berthelot, L. Toupet, L. Nyulaszi, R. Reau, Chem. Eur. J., 2001, 7, 4222.CrossRefGoogle Scholar
  5. 5.
    E. E. Zvereva, S. Grimme, S. A. Katsyuba, T. I. Burganov, A. A. Zagidullin, V. A. Miluykov, O. G. Sinyashin, J. Phys. Chem. A, 2013, 117, 6827.CrossRefGoogle Scholar
  6. 6.
    A. Zagidullin, I. Bezkishko, V. Miluykov, O. Sinyashin, Mendeleev Commun., 2013, 23, 117.CrossRefGoogle Scholar
  7. 7.
    S. A. Katsyuba, T. I. Burganov, E. E. Zvereva, A. A. Zagidullin, V. A. Miluykov, P. Lönnecke, E. Hey-Hawkins, O. G. Sinyashin, J. Phys. Chem. A, 2014, 118, 12168.CrossRefGoogle Scholar
  8. 8.
    M. V. Vol´kenshtein, Zh. Fiz. Khim., 1943, 17, 367 [Russ. J. Phys. Chem. (Engl. Transl.), 1943, 17].Google Scholar
  9. 9.
    P. P. Shorygin, Zh. Fiz. Khim., 1947, 21, 1125 [Russ. J. Phys. Chem. (Engl. Transl.), 1947, 21].Google Scholar
  10. 10.
    P. P. Shorygin, Russ. Chem. Rev. (Engl. Transl.), 1971, 15, 694 [Usp. Khim., 1971, 15].Google Scholar
  11. 11.
    L. A. Leites, S. S. Bukalov, J. Raman Spectrosc., 2001, 32, 413.CrossRefGoogle Scholar
  12. 12.
    E. D. Schmid, R. D. Topsom, J. Am. Chem. Soc., 1981, 103, 1628.CrossRefGoogle Scholar
  13. 13.
    A. Zagidullin, V. Miluykov, O. Sinyashin, P. Lönnecke, E. Hey-Hawkins, Heteroatom Chemistry, 2014, 25, 28.CrossRefGoogle Scholar
  14. 14.
    V. A. Miluykov, A. V. Kataev, O. G. Sinyashin, P. Lönnecke, E. Hey-Hawkins, Mendeleev Commun., 2006, 204.Google Scholar
  15. 15.
    V. Miluykov, I. Bezkishko, A. Zagidullin, O. Sinyashin, E. Hey-Hawkins, Russ. Chem. Bull. (Int. Ed.), 2010, 59, 1269 [Izv. Akad. Nauk, Ser. Khim., 2010, 1206].Google Scholar
  16. 16.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, T. Vrevenjr, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu,, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, GAUSSIAN 03 (Revision B.05), Gaussian, Inc., Wallingford (CT), 2004.Google Scholar
  17. 17.
    A. D. Becke, Phys. Rev., A, 1988, 38, 3098.CrossRefGoogle Scholar
  18. 18.
    C. Lee, W. Yang, R. G. Parr, Phys.Rev. B, 1988, 37, 785.CrossRefGoogle Scholar
  19. 19.
    M. V. Vol´kenshtein, Stroenie i fizicheskie svoistva molekul [Structure and Physical Properties of Molecules], AN SSSR Publ., Moscow, 1955, 638 pp. (in Russian).Google Scholar
  20. 20.
    J. Baker, A. Jarzecki, P. Pulay, J. Phys. Chem. A, 1998, 102, 1412.CrossRefGoogle Scholar
  21. 21.
    S. A. Katsyuba, E. E. Vandyukova, Chem. Phys. Lett., 2003, 377, 658.CrossRefGoogle Scholar
  22. 22.
    V. A. Sipachev, J. Mol. Struct., 2001, 67, 567.Google Scholar
  23. 23.
    D. Porezag, M. R. Pederson, Phys. Rev. B, 1996, 54, 7830.CrossRefGoogle Scholar
  24. 24.
    G. Keresztury, Raman Spectroscopy: Theory; Handbook of Vibrational Spectroscopy, Eds J. M. Chalmers, P. R. Griffiths, John Wiley and Sons, Chichester, London, 2002, p.71.Google Scholar
  25. 25.
    R. Bauernschmitt, R. Ahlrichs, Chem. Phys. Lett., 1996, 256, 454.CrossRefGoogle Scholar
  26. 26.
    E. U. K. Gross, J. F. Dobson, M. Petersilka, Density Functional Theory II, Springer Series in Topics in Current Chemistry, Ed. R. F. Nalewajski, Springer, Heidelberg, Germany, 1996.Google Scholar
  27. 27.
    M. E. Casida, Recent Advances in Density Functional Methods, Ed. D. P. Chong, World Scientific, Singapore, 1995.Google Scholar
  28. 28.
    F. Furche, J. Chem. Phys., 2001, 114, 5982.CrossRefGoogle Scholar
  29. 29.
    T. I. Burganov, Ph. D. Thesis (Chem.), A. E. Arbuzov Institute of Organic and Physical Chemistry, Kazan Scientific Center of the Russian Academy of Sciences, Kazan, 2015, 145 pp. (in Russian).Google Scholar
  30. 30.
    E. B. Wilson, Phys. Rev., 1934, 45, 706.CrossRefGoogle Scholar
  31. 31.
    P. P. Shorygin, A. X. Khalilov, Zh. Fiz. Khim., 1951, 25, 145 [Russ. J. Phys. Chem. (Engl. Transl.), 1951, 25].Google Scholar
  32. 32.
    V. Krishnakumar, G. Keresztury, T. Sundius, R. Ramasamy, J. Mol. Struct., 2004, 702, 9.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • T. I. Burganov
    • 1
    Email author
  • S. A. Katsyuba
    • 1
  • A. A. Zagidullin
    • 1
  • E. E. Zvereva
    • 1
  • V. A. Miluykov
    • 1
  • O. G. Sinyashin
    • 1
  1. 1.A. E. Arbuzov Institute of Organic and Physical ChemistryKazan Scientific Center of the Russian Academy of SciencesKazanRussian Federation

Personalised recommendations