Russian Chemical Bulletin

, Volume 64, Issue 2, pp 318–321 | Cite as

Iridium-catalyzed asymmetric reductive amination of ketones using an amidophosphite ligand

  • S. E. Lyubimov
  • D. V. Ozolin
  • P. Yu. Ivanov
  • K. B. Maiorov
  • V. S. Velezheva
  • V. A. Davankov
Full Articles

Abstract

A direct iridium-catalyzed asymmetric reductive amination of ketones using an amidophosphite ligand was accomplished for the first time. A new one-step approach to the preparation of biologically active pyrazinocarbazoles was developed.

Keywords

asymmetric reductive amination iridium compounds amidophosphites biologically active compounds 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G.-Q. Lin, Q.-D. You, J.-F. Cheng, Chiral Drugs: Chemistry and Biological Action, Wiley & Sons, Hoboken, 2011.CrossRefGoogle Scholar
  2. 2.
    I. Ojima, Catalitic Asymmetric Synthesis, 3rd ed., Wiley-VCH, Hoboken, 2010.CrossRefGoogle Scholar
  3. 3.
    D.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem. Rev., 2012, 112, 2557.CrossRefGoogle Scholar
  4. 4.
    H. U. Blaser, H. P. Buser, H. P. Jalett, B. Pugin, F. Spindler, Synlett., 1999, 867.Google Scholar
  5. 5.
    R. Kadyrov, T. H. Riermeier, U. Dingerdissen, V. Tararov, A. Börner, J. Org. Chem., 2003, 68, 4067.CrossRefGoogle Scholar
  6. 6.
    T. Bunlaksananusorn, F. Rampf, Synlett., 2005, 2682.Google Scholar
  7. 7.
    L. Rubio-Pérez, F. J. Pérez-Flores, P. Sharma, L. Velasco, A. Cabrera, Org. Lett., 2009, 11, 265.CrossRefGoogle Scholar
  8. 8.
    Y. X. Chi, Y. G. Zhou, X. Zhang, J. Org. Chem., 2003, 68, 4120.CrossRefGoogle Scholar
  9. 9.
    N. Mrsic, A. J. Minnaard, B. L. Feringa, J. G. de Vries, J. Am. Chem. Soc., 2009, 131, 8358.CrossRefGoogle Scholar
  10. 10.
    S. E. Lyubimov, E. A. Rastorguev, P. V. Petrovskii, E. S. Kelbysheva, N. M. Loim, V. A. Davankov, Tetrahedron Lett., 2011, 52, 1395.CrossRefGoogle Scholar
  11. 11.
    N. Mrsic, T. Jerphagnon, A. J. Minnaard, B. L. Feringa, J. G. de Vries, Adv. Synth. Catal., 2009, 351, 2549.CrossRefGoogle Scholar
  12. 12.
    H. Bernsmann, M. van den Berg, R. Hoen, A. Minnaard, G. Mehler, M. Reetz, J. De Vries, B. Feringa, J. Org. Chem., 2005, 70, 943.CrossRefGoogle Scholar
  13. 13.
    D.-S. Wang, Q.-A. Chen, S.-M. Lu, Y.-G. Zhou, Chem. Rev., 2012, 112, 2557.CrossRefGoogle Scholar
  14. 14.
    Y.-M. He, F.-T. Song, Q.-H. Fan, Top. Curr. Chem., 2014, 343, 145.CrossRefGoogle Scholar
  15. 15.
    L. N. Filitis, T. V. Akalaeva, O. Yu. Amel´kin, A. I. Bokanov, P. Yu. Ivanov, V. I. Shvedov, Pharm. Chem. J., 1988, 22, 780CrossRefGoogle Scholar
  16. 15.
    L. N. Filitis, Khim. Farm. Zh., 1988, 22, 1217].Google Scholar
  17. 16.
    N. Gulzar, M. Klussmann, Org. Biomol. Chem., 2013, 11, 4516.CrossRefGoogle Scholar
  18. 17.
    J. L. Herde, J. C. Lambert, C. V. Senoff, Inorg. Synth., 1974, 15, 18.Google Scholar
  19. 18.
    V. Semeniuchenko, V. Khilya, U. Groth, Synlett, 2009, 20, 271.CrossRefGoogle Scholar
  20. 19.
    R. Sheng, L. Shen, Y.-Q. Chen, Y.-Z. Hu, Synth. Commun., 2009, 39, 1120.CrossRefGoogle Scholar
  21. 20.
    K. S. Gudmundsson, P. R. Sebahar, L. D´Aurora Richardson, J. G. Catalano, S. D. Boggs, A. Spaltenstein, P. B. Sethna, K. W. Brown, R. Harvey, K. R. Romines, Bioorg. Med. Chem. Lett., 2009, 19, 3489.CrossRefGoogle Scholar
  22. 21.
    Q. Sun, Y. Wang, D. Yuan, Y. Yao, Q. Shen, Organometallics, 2014, 33, 994.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • S. E. Lyubimov
    • 1
  • D. V. Ozolin
    • 1
  • P. Yu. Ivanov
    • 1
  • K. B. Maiorov
    • 2
  • V. S. Velezheva
    • 1
  • V. A. Davankov
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation
  2. 2.Central Tuberculosis Research InstituteMoscowRussian Federation

Personalised recommendations