Advertisement

Russian Chemical Bulletin

, Volume 63, Issue 11, pp 2485–2492 | Cite as

Non-symmetrically substituted ruthenocenes: synthesis, structures, and bond nature. Electronic effects of substituents in ruthenocene

  • D. V. Muratov
  • A. S. Romanov
  • A. R. KudinovEmail author
Full Articles

Abstract

Non-symmetrically substituted ruthenocenes CpRuCp´ (Cp´ = C5H4CHO (1a), C5H4COMe (1b), C5H4SiMe3 (1c), 1,3-C5H3(SiMe3)2 (1d), and Cp* (1e)) were synthesized in high yields by the reaction of [CpRu(MeCN)3]+ with cyclopentadienide anions. The structures of complexes 1a,b,d were determined by X-ray diffraction analysis. According to the energy partition analysis data, donor substituents strengthen the interaction between the [RuCp]+ and Cp´ fragments, whereas acceptor substituents weaken the interaction. This bond is predominantly electrostatic (56—59%). Based on the calculated electrostatic potentials at the ruthe-nium nucleus, it is shown that the donor ability of the substituents decreases in the following order: NMe2 > NH2 > OMe > Me ≈ OH > Rc > Fc ≈ Allyl ≈ H > SiMe3 > CH=CH2 ≈ Ph > PH2 > > SH ≈ F > SiH3 ≈ C≡CH > Cl > Br ≈ I ≈ COOMe > COOH > COMe > CF3 > CHO > CN > NO2.

Keywords

ruthenium ruthenocene sandwich compounds DFT calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Wilkinson, J. Am. Chem. Soc., 1952, 74, 6146.CrossRefGoogle Scholar
  2. 2.
    P. Pertici, G. Vitulli, M. Paci, L. Porri, J. Chem. Soc., Dalton Trans., 1980, 1961.Google Scholar
  3. 3.
    C. H. Winter, S. Pirzad, D. D. Graf, D. H. Cao, M. J. Heeg, Inorg. Chem., 1993, 32, 3654.CrossRefGoogle Scholar
  4. 4.
    A. Bauer, U. Englert, S. Geyser, F. Podewils, A. Salzer, Organometallics, 2000, 19, 5471.CrossRefGoogle Scholar
  5. 5.
    M. A. Bennett, M. I. Bruce, T. W. Matheson, in Comprehensive Organometallic Chemistry, Eds E. W. Abel, F. G. A. Stone, G. Wilkinson, Pergamon Press, Oxford, 1982, Vol. 4, p. 759.Google Scholar
  6. 6.
    M. I. Bruce, in Comprehensive Organometallic Chemistry II, Eds G. Wilkinson, F. G. A. Stone, E. W. Abel, Pergamon Press, Oxford, 1995, Vol. 7, p. 603.Google Scholar
  7. 7.
    A. R. Kudinov, M. I. Rybinskaya, Yu. T. Struchkov, A. I. Yanovskii, P. V. Petrovskii, J. Organomet. Chem., 1987, 336, 187.CrossRefGoogle Scholar
  8. 8.
    P. G. Gassman, C. H. Winter, J. Am. Chem. Soc., 1988, 110, 6130.CrossRefGoogle Scholar
  9. 9.
    M. O. Albers, D. C. Liles, D. J. Robinson, A. Shaver, E. Singleton, M. B. Wiege, J. C. A. Boeyens, D. C. Levendis, Organometallics, 1986, 5, 2321.CrossRefGoogle Scholar
  10. 10.
    M. O. Albers, D. J. Robinson, A. Shaver, E. Singleton, Organometallics, 1986, 5, 2199.CrossRefGoogle Scholar
  11. 11.
    E. P. Kundig, F. R. Monnier, Adv. Synth. Catal., 2004, 346, 901.CrossRefGoogle Scholar
  12. 12.
    E. E. Karslyan, A. I. Konovalov, D. S. Perekalin, P. V. Petrovskii, A. R. Kudinov, Russ. Chem. Bull. (Int. Ed.), 2008, 57, 2032.[Izv. Akad. Nauk, Ser. Khim., 2008, 1997].CrossRefGoogle Scholar
  13. 13.
    D. E. Bublitz, W. E. McEwen, J. Kleinberg, J. Am. Chem. Soc., 1962, 84, 1845.CrossRefGoogle Scholar
  14. 14.
    P. Bickert, B. Hildebrandt, K. Hafner, Organometallics, 1984, 3, 653.CrossRefGoogle Scholar
  15. 15.
    S. Kamiyama, T. M. Suzuki, T. Kimura, A. Kasahara, Bull. Chem. Soc. Jpn, 1978, 51, 909.CrossRefGoogle Scholar
  16. 16.
    O. Hofer, K. Schlogl, J. Organomet. Chem., 1968, 13, 443.CrossRefGoogle Scholar
  17. 17.
    M. D. Rausch, E. O. Fischer, H. Grubert, J. Am. Chem. Soc., 1960, 82, 76.CrossRefGoogle Scholar
  18. 18.
    E. A. Hill, J. H. Richards, J. Am. Chem. Soc., 1961, 83, 3840.CrossRefGoogle Scholar
  19. 19.
    G. Marr, D. E. Webster, J. Organomet. Chem., 1964, 2, 99.CrossRefGoogle Scholar
  20. 20.
    A. O. Borissova, M. Yu. Antipin, D. S. Perekalin, K. A. Lyssenko, Cryst. Eng. Comm., 2008, 10, 827.CrossRefGoogle Scholar
  21. 21.
    T. Ziegler, J. Autschbach, Chem. Rev., 2005, 105, 2695.CrossRefGoogle Scholar
  22. 22.
    G. Frenking, A. Krapp, J. Comput. Chem., 2007, 28, 15.CrossRefGoogle Scholar
  23. 23.
    M. Lein, G. Frenking, in Theory and Applications of Computational Chemistry: The First Forty Years, Eds C. E. Dykstra, G. Frenking, K. S. Kim, G. E. Scuseria, Elsevier, Amsterdam, 2005, 291.CrossRefGoogle Scholar
  24. 24.
    A. S. Romanov, D. V. Muratov, T. V. Timofeeva, A. R. Kudinov, Inorg. Chim. Acta, 2014, 415, 120.CrossRefGoogle Scholar
  25. 25.
    A. Krapp, K. K. Pandey, G. Frenking, J. Am. Chem. Soc., 2007, 129, 7596.CrossRefGoogle Scholar
  26. 26.
    J. Frunzke, M. Lein, G. Frenking, Organometallics, 2002, 21, 3351.CrossRefGoogle Scholar
  27. 27.
    B. Galabov, S. Ilieva, H. F. Schaefer III, J. Org. Chem., 2006, 71, 6382.CrossRefGoogle Scholar
  28. 28.
    T. P. Gill, K. R. Mann, Organometallics, 1982, 1, 485.CrossRefGoogle Scholar
  29. 29.
    E. P. Kundig, F. R. Monnier, Adv. Synth. Catal., 2004, 346, 901.CrossRefGoogle Scholar
  30. 30.
    W. P. Hart, D. W. Macomber, M. D. Rausch, J. Am. Chem. Soc., 1980, 102, 1196.CrossRefGoogle Scholar
  31. 31.
    R. D. Rogers, J. L. Atwood, M. D. Rausch, D. W. Macomber, W. P. Hart, J. Organomet. Chem., 1982, 238, 79.CrossRefGoogle Scholar
  32. 32.
    U. Kölle, B. Fuβ, Chem. Ber., 1984, 117, 743.CrossRefGoogle Scholar
  33. 33.
    L. Brandsma, Preparative Polar Organometallic Chemistry, Springer-Verlag, Berlin, 1990, Vol. 2, p. 49.Google Scholar
  34. 34.
    A. M. Cardoso, R. J. H. Clark, S. Moorhouse, J. Chem. Soc., Dalton Trans., 1980, 1156.Google Scholar
  35. 35.
    APEX2 Software Package, Bruker AXS Inc., Madison, USA, 2005.Google Scholar
  36. 36.
    SHELXTL v. 5.10, Structure Determination Software Suite, Bruker AXS, Madison, USA, 1998.Google Scholar
  37. 37.
    ADF 2006.01, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands, http://www.scm.com.Google Scholar
  38. 38.
    A. D. Becke, Phys. Rev. A, 1988, 38, 3098.CrossRefGoogle Scholar
  39. 39.
    J. P. Perdew, Phys. Rev. B, 1986, 33, 8822.CrossRefGoogle Scholar
  40. 40.
    E. van Lenthe, E. J. Baerends, J. G. Snijders, J. Chem. Phys., 1993, 99, 4597.CrossRefGoogle Scholar
  41. 41.
    K. Morokuma, Chem. Phys., 1971, 55, 1236.Google Scholar
  42. 42.
    T. Ziegler, A. Rauk, Theor. Chim. Acta, 1977, 46, 1.CrossRefGoogle Scholar
  43. 43.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez, J. A. Pople, Gaussian 03, Revision C.02, Gaussian Inc., Wallingford, USA, 2004.Google Scholar
  44. 44.
    F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys., 2005, 7, 3297.CrossRefGoogle Scholar
  45. 45.
    http://www.cosmologic.de/basis-sets/basissets.php.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • D. V. Muratov
    • 1
  • A. S. Romanov
    • 1
  • A. R. Kudinov
    • 1
    Email author
  1. 1.A. N. Nesmeyanov Institute of Organoelement CompoundsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations