Advertisement

Russian Chemical Bulletin

, Volume 63, Issue 11, pp 2428–2433 | Cite as

Activation of M—H bond upon the complexation of transition metal hydrides with acids and bases

  • O. A. Filippov
  • I. E. Golub
  • E. S. Osipova
  • V. A. Kirkina
  • E. I. Gutsul
  • N. V. Belkova
Full Articles

Abstract

Features of the electronic structure of adducts of transition metal hydride complexes (Cp*M(dppe)H, dppe is the 1,2-(diphenylphosphino)ethane, M = Fe, Ru, Os; CpM(CO)3H, M = Mo, W) with acids and bases were analyzed with the ADF2014 program using energy decomposition analysis (EDA) by the Ziegler-Rauk method combined with the natural orbitals for chemical valence theory (ETS-NOCV). The nature of orbital interactions in the complex determines the reaction pathway: σMH → σ*OH interaction leads to the proton transfer to hydride ligand, nM → σ*OH leads to the metal atom protonation, nN → σ*MH implies the metal hydride deprotonation, and σMH → n*B corresponds to the hydride transfer to Lewis acid. It was shown that M-H bond polarization change has the similar character upon the formation of complexes with Brønsted and Lewis acids. The ease of polarization of M-H bonds in complexes CpM(CO)3H determines their reactivity as proton and hydride ion donors.

Keywords

quantum chemical calculations hydrogen bonds non-covalent interactions transition metal hydrides 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Pearson, Chem. Rev., 1985, 85, 41.CrossRefGoogle Scholar
  2. 2.
    R. H. Crabtree, in The Organometallic Chemistry of the Transition Metals, John Wiley and Sons, Inc., Hoboken, New Jersey, USA, 2014, Ch. 3, p. 69.Google Scholar
  3. 3.
    R. L. Sweany, J. Halpern, J. Am. Chem. Soc., 1977, 99, 8335.CrossRefGoogle Scholar
  4. 4.
    D. P. Estes, A. K. Vannucci, A. R. Hall, D. L. Lichtenberger, J. R. Norton, Organometallics, 2011, 30, 3444.CrossRefGoogle Scholar
  5. 5.
    S. S. Kristjansdottir, J. R. Norton, in Transition Metal Hydrides, Ed. A. Dedieu, VCH, New York, 1991, p. 309.Google Scholar
  6. 6.
    T. Y. Cheng, R. M. Bullock, Organometallics, 2002, 21, 2325.CrossRefGoogle Scholar
  7. 7.
    J. Choi, L. Tang, J. R. Norton, J. Am. Chem. Soc., 2007, 129, 234.CrossRefGoogle Scholar
  8. 8.
    R. M. Bullock, J. S. Song, J. Am. Chem. Soc., 1994, 116, 8602.CrossRefGoogle Scholar
  9. 9.
    J. S. Song, D. J. Szalda, R. M. Bullock, C. J. C. Lawrie, M. A. Rodkin, J. R. Norton, Angew. Chem., Int. Ed., 1992, 31, 1233.CrossRefGoogle Scholar
  10. 10.
    R. M. Bullock, Chem. Eur. J., 2004, 10, 2366.CrossRefGoogle Scholar
  11. 11.
    H. Guan, M. Iimura, M. P. Magee, J. R. Norton, G. Zhu, J. Am. Chem. Soc., 2005, 127, 7805.CrossRefGoogle Scholar
  12. 12.
    H. R. Guan, S. A. Saddoughi, A. P. Shaw, J. R. Norton, Organometallics, 2005, 24, 6358.CrossRefGoogle Scholar
  13. 13.
    H. R. Guan, M. Iimura, M. P. Magee, J. R. Norton, K. E. Janak, Organometallics, 2003, 22, 4084.CrossRefGoogle Scholar
  14. 14.
    R. F. Jordan, J. R. Norton, J. Am. Chem. Soc., 1982, 104, 1255.CrossRefGoogle Scholar
  15. 15.
    K. Abdur-Rashid, T. P. Fong, B. Greaves, D. G. Gusev, J. G. Hinman, S. E. Landau, A. J. Lough, R. H. Morris, J. Am. Chem. Soc., 2000, 122, 9155.CrossRefGoogle Scholar
  16. 16.
    E. S. Shubina, N. V. Belkova, E. V. Bakhmutova, L. N. Saitkulova, A. V. Ionidis, L. M. Epstein, Russ. Chem. Bull. (Int. Ed.), 1998, 47, 846. [Izv. Akad. Nauk, Ser. Khim., 1998, 817].CrossRefGoogle Scholar
  17. 17.
    E. S. Shubina, N. V. Belkova, L. M. Epstein, J. Organomet. Chem., 1997, 536, 17.CrossRefGoogle Scholar
  18. 18.
    V. A. Levina, O. A. Filippov, E. I. Gutsul, N. V. Belkova, L. M. Epstein, A. Lleds, E. S. Shubina, J. Am. Chem. Soc., 2010, 132, 1123.CrossRefGoogle Scholar
  19. 19.
    N. V. Belkova, E. I. Gutsul, O. A. Filippov, V. A. Levina, D. A. Valyaev, L. M. Epstein, A. Lleds, E. S. Shubina, J. Am. Chem. Soc., 2006, 128, 3486.CrossRefGoogle Scholar
  20. 20.
    S. Namorado, M. A. Antunes, L. F. Veiros, J. R. Ascenso, M. T. Duarte, A. M. Martins, Organometallics, 2008, 27, 4589.CrossRefGoogle Scholar
  21. 21.
    M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G. A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H. P. Hratchian, A. F. Izmaylov, J. Bloino, G. Zheng, J. L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J. A. Montgomery, Jr., J. E. Peralta, F. Ogliaro, M. J. Bearpark, J. Heyd, E. N. Brothers, K. N. Kudin, V. N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. P. Rendell, J. C. Burant, S. S. Iyengar, J. Tomasi, M. Cossi, N. Rega, N. J. Millam, M. Klene, J. E. Knox, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, R. L. Martin, K. Morokuma, V. G. Zakrzewski, G. A. Voth, P. Salvador, J. J. Dannenberg, S. Dapprich, A. D. Daniels, Ö. Farkas, J. B. Foresman, J. V. Ortiz, J. Cioslowski, D. J. Fox, Gaussian 09, Revision C.01, Gaussian, Inc., Wallingford CT, 2009.Google Scholar
  22. 22.
    ADF2014, SCM, Theoretical Chemistry, Vrije Universiteit, Amsterdam, The Netherlands; http://www.scm.com.Google Scholar
  23. 23.
    T. Ziegler, A. Rauk, Inorg. Chem., 1979, 18, 1558.CrossRefGoogle Scholar
  24. 24.
    T. Ziegler, A. Rauk, Inorg. Chem., 1979, 18, 1755.CrossRefGoogle Scholar
  25. 25.
    F. M. Bickelhaupt, E. J. Baerends, in Rev. Comput. Chem., Eds K. B. Lipkowitz, D. B. Boyd, John Wiley and Sons, Inc., New York, USA, 2007, Vol. 15, p. 1.Google Scholar
  26. 26.
    M. P. Mitoraj, A. Michalak, T. Ziegler, J. Chem. Theory Comput., 2009, 5, 962.CrossRefGoogle Scholar
  27. 27.
    O. A. Filippov, N. V. Belkova, L. M. Epstein, A. Lledos, E. S. Shubina, ChemPhysChem, 2012, 13, 2677.CrossRefGoogle Scholar
  28. 28.
    Y. Zhao, N. E. Schultz, D. G. Truhlar, J. Chem. Phys., 2005, 123, 1611. 3.Google Scholar
  29. 29.
    L. E. Roy, P. J. Hay and R. L. Martin, J. Chem. Theory Comput., 2008, 4, 1029.CrossRefGoogle Scholar
  30. 30.
    W. R. Wadt, P. J. Hay, J. Chem. Phys., 1985, 82, 284.CrossRefGoogle Scholar
  31. 31.
    P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 270.CrossRefGoogle Scholar
  32. 32.
    E. D. Glendening, J, K. Badenhoop, A. E. Reed, J. E. Carpenter, J. A. Bohmann, C. M. Morales, F. Weinhold, NBO 5.0, Theoretical Chemistry Institute, University of Wisconsin, Madison, 2001; http://www.chem.wisc.edu/~nbo5/.Google Scholar
  33. 33.
    A. E. Reed, L. A. Curtiss, F. Weinhold, Chem. Rev., 1988, 88, 899.CrossRefGoogle Scholar
  34. 34.
    E. Van Lenthe, E. J. Baerends, J. Comput. Chem., 2003, 24, 1142.CrossRefGoogle Scholar
  35. 35.
    M. P. Mitoraj, A. Michalak, T. Ziegler, Organometallics, 2009, 28, 3727.CrossRefGoogle Scholar
  36. 36.
    I. V. Alabugin, M. Manoharan, S. Peabody, F. Weinhold, J. Am. Chem. Soc., 2003, 125, 5973.CrossRefGoogle Scholar
  37. 37.
    A. Rauk, Orbital Interaction Theory of Organic Chemistry, 2nd ed., John Wiley and Sons, Inc., New York, USA, 2001.Google Scholar
  38. 38.
    N. V. Belkova, E. S. Shubina, L. M. Epstein, Acc. Chem. Res., 2005, 38, 624.CrossRefGoogle Scholar
  39. 39.
    T.-Y. Cheng, B. S. Brunschwig, R. M. Bullock, J. Am. Chem. Soc., 1998, 120, 1312.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • O. A. Filippov
    • 1
  • I. E. Golub
    • 1
  • E. S. Osipova
    • 1
  • V. A. Kirkina
    • 1
  • E. I. Gutsul
    • 1
  • N. V. Belkova
    • 1
  1. 1.A. N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of SciencesMoscowRussian Federation

Personalised recommendations