Advertisement

Russian Chemical Bulletin

, Volume 63, Issue 8, pp 1815–1822 | Cite as

Organoboron nanoparticles: synthesis, structures, and some physicochemical properties

  • A. K. Gatin
  • M. V. Grishin
  • N. N. Kolchenko
  • V. G. Slutskii
  • V. A. Kharitonov
  • B. R. Shub
Full Articles

Abstract

Organoboron nanoparticles synthesized from carborane C2B10H12 by high-temperature pyrolysis of carborane vapor were investigated. The structures, electronic characteristics, and related physicochemical properties were found to depend on the sizes and shapes. The data of quantum chemical calculations performed in the framework of the density functional theory also indicate a relationship between sizes, dimensionalities, and electronic structure of the nanoparticles.

Key words

carboranes physical properties ammonia decomposition 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. N. Caruso, R. B. Billa, S. Balaz, J. I. Brand, P. A. Dowben, J. Phys.: Condens. Matter, 2004, 16, L139.Google Scholar
  2. 2.
    A. R. Genady, Eur. J. Med. Chem., 2009, 44, 409.CrossRefGoogle Scholar
  3. 3.
    J. Zhao, P. Huang, G. Chen, M. Zhan, Inorg. Chem. Commun., 2012, 15, 321.CrossRefGoogle Scholar
  4. 4.
    Z. Xie, Pure Appl. Chem., 2003, 75, 1335.CrossRefGoogle Scholar
  5. 5.
    S. E. Lyubimov, A. A. Tyutyunov, V. N. Kalinin, E. E. Said-Galiev, A. R. Khokhlov, P. V. Petrovskii, V. A. Davankov, Tetrahedron Lett., 2007, 48, 8217.CrossRefGoogle Scholar
  6. 6.
    T. J. Wedge, M. F. Hawthorne, Coord. Chem. Rev., 2003, 240, 111.CrossRefGoogle Scholar
  7. 7.
    V. G. Slutsky, S. A. Tsyganov, E. S. Severin, Propulsion, Explos., Pyrotechnics, 2005, 30, 303.CrossRefGoogle Scholar
  8. 8.
  9. 9.
  10. 10.
    M. V. Grishin, A. K. Gatin, V. G. Slutskii, V. A. Kharitonov, B. R. Shub, Khim. Fiz. [Chemical Physics], 2013, 32, 1 (in Russian).Google Scholar
  11. 11.
  12. 12.
    T. Ozaki, Phys. Rev. B, 2003, 67, 155108.CrossRefGoogle Scholar
  13. 13.
    T. Ozaki, H. Kino, Phys. Rev., 2004, 69, 19511.CrossRefGoogle Scholar
  14. 14.
  15. 15.
    E. S. Soldatov, S. P. Gubin, I. A. Maximov, G. B. Khomutov, V. V. Kolesov, A. N. Sergeev-Cherenkov, V. V. Shorokhov, K. S. Sulaimankulov, D. B. Suyatin, Microelectron. Eng., 2003, 69, 536.CrossRefGoogle Scholar
  16. 16.
    S. Lee, J. Mazurowski, G. Ramseyer, P. A. Dowben, J. Appl. Phys., 1992, 72, 4925.CrossRefGoogle Scholar
  17. 17.
    Ch. Feldman, F. Ordway, W. Zemmerman III, K. Moorjani, in Boron — Preparation, Properties, and Application, Plenum Press, New York, 1965, 235.Google Scholar
  18. 18.
    I. P. Beletskaya, V. I. Bregadze, K. Z. Kabytaev, G. G. Zhigareva, P. V. Petrovskii, I. V. Glukhov, Z. A. Starikova, Organometallics, 2007, 26, 740.CrossRefGoogle Scholar
  19. 19.
    X. Zhang, X. Tang, J. Yang, Y. Li, H. Yan, V. I. Bregadze, Organometallics, 2013, 32, 2014.CrossRefGoogle Scholar
  20. 20.
    J. M. Oliva, P. von Ragué Schleyer, G. Aullón, J. I. Burgos, A. Fernández-Barbero, I. Alkorta, Phys. Chem. Chem. Phys., 2010,12, 5101.CrossRefGoogle Scholar
  21. 21.
    G. P. Luchinskii, Kurs Khimii [The Course of Chemistry], Ed. G. S. Gol’denberg, Vysshaya Shkola, Moscow, 1985, 416 pp. (in Russian).Google Scholar
  22. 22.
    S. P. Knyazev, E. G. Gordeev, E. A. Chernyshev, Vestn. MITKhT [Bulletin of Moscow Institute of Fine Chemical Technology], 2007, 2, No. 4, 66 (in Russian).Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. K. Gatin
    • 1
  • M. V. Grishin
    • 1
  • N. N. Kolchenko
    • 1
  • V. G. Slutskii
    • 1
  • V. A. Kharitonov
    • 1
  • B. R. Shub
    • 1
  1. 1.N. N. Semenov Institute of Chemical PhysicsRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations