Advertisement

Russian Chemical Bulletin

, Volume 63, Issue 8, pp 1728–1733 | Cite as

Molecular rotors based on styryl dyes. Viscosity dependence of rotation of molecular fragments

  • V. V. Volchkov
  • M. N. Khimich
  • L. D. Uzhinova
  • B. M. Uzhinov
  • M. Ya. Mel’nikov
  • S. P. Gromov
  • A. I. Vedernikov
  • S. K. Sazonov
  • M. V. Alfimov
Full Articles
  • 71 Downloads

Abstract

Three donor-acceptor styryl dyes R-Het+-CH=CH-C6H4-NR′R″ClO4 (Het is pyridyl) were synthesized. Their spectral-luminescence behavior allows their assignment to a class of molecular rotors. The influence of the viscosity, polarity, and temperature of the medium on their absorption and fluorescence properties was studied. A pronounced enhancement of dye fluorescence accompanied by a short-wavelength shift of the fluorescence maximum is observed with an increase in the viscosity of the medium and temperature decrease. The measurements of the fluorescence spectra of the dyes in the poly(methyl methacrylate) films at 293 and 77 K confirmed the effect of the medium viscosity on the rotation ability of molecular fragments upon photoexcitation. According to the quantum chemical calculations, in excited molecules of the styryl dyes in nonpolar solvents, molecular fragments rotate mainly about the central ethylene bond \((HC\underline \cdots CH)\). In polar solvents, the rotation barriers around the ordinary bonds of the ethylene fragment decrease.

Key words

styryl dyes fluorescence viscosity molecular rotors quantum chemical calculations MCSCF, MCQDPT and PCM methods 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Humphry-Baker, M. Graetzel, R. Steiger, J. Am. Chem. Soc., 1980, 102, 847.CrossRefGoogle Scholar
  2. 2.
    M. A. Haidekker, W. Akers, D. Lichlyter, T. P. Brady, E. A. Theodorakis, Sensor Lett., 2005, 3, 42.CrossRefGoogle Scholar
  3. 3.
    P. Bosch, F. Catalina, T. Corrales, C. Peinado, Chem. Eur. J., 2005, 11, 4314.CrossRefGoogle Scholar
  4. 4.
    E. S. Voropai, M. P. Samtsov, K. N. Kaplevski, A. A. Maskevich, V. I. Stepuro, O. I. Povarova, I. M. Kuznetsova, K. K. Turoverov, A. L. Fink, V. N. Uverskii, J. Appl. Spect., 2003, 70, 868.CrossRefGoogle Scholar
  5. 5.
    B. M. Uzhinov, V. L. Ivanov, M. Ya. Mel’nikov, Russ. Chem. Rev., 2011, 80, 1179.CrossRefGoogle Scholar
  6. 6.
    Y. Shiraishi, T. Inoue, T. Hirai, Langmuir, 2010, 26, 17505.CrossRefGoogle Scholar
  7. 7.
    B. Wandelt, A. Mielniczak, P. Turkewitsch, G. D. Darling, B. R. Stranix, Biosensors Bioelectronics, 2003, 18, 465.CrossRefGoogle Scholar
  8. 8.
    S. K. Saha, P. Purkayastha, A. B. Das, S. Dhara, J. Photochem. Photobiol. A: Chem., 2008, 199, 179.CrossRefGoogle Scholar
  9. 9.
    B. Wandelt, P. Cywinski, G. D. Darling, B. R. Stranix, Biosensors Bioelectronics, 2005, 20, 1728.CrossRefGoogle Scholar
  10. 10.
    B. Strehmel, H. Seifert, W. Rettig, J. Phys. Chem. B, 1997, 101, 2232.CrossRefGoogle Scholar
  11. 11.
    X. Cao, R. W. Tolbert, J. L. McHale, W. D. Edwards, J. Phys. Chem. A, 1998, 102, 2739.CrossRefGoogle Scholar
  12. 12.
    S. Tazuke, R. K. Guo, R. Hayashi, Macromolecules, 1989, 22, 729.CrossRefGoogle Scholar
  13. 13.
    S. Tazuke, R. K. Guo, T. Ikeda, J. Phys. Chem., 1990, 94, 1408.CrossRefGoogle Scholar
  14. 14.
    J. Kim, M. Lee, J.-H. Yang, J.-H. Choy, J. Phys. Chem. A, 2000, 104, 1388.CrossRefGoogle Scholar
  15. 15.
    S. P. Gromov, O. A. Fedorova, M. V. Alfimov, S. I. Druzhinin, M. V. Rusalov, B. M. Uzhinov, Russ. Chem. Bull. (Int. Ed.), 1995, 44, 1922 [Izv. Akad. Nauk, Ser. Khim., 1995, 2003].CrossRefGoogle Scholar
  16. 16.
    S. I. Druzhinin, M. V. Rusalov, B. M. Uzhinov, M. V. Alfimov, S. P. Gromov, O. A. Fedorova, Proc. Ind. Acad. Sci.: Chem. Sci., 1995, 107, 721.Google Scholar
  17. 17.
    L. G. Kuz’mina, A. I. Vedernikov, N. A. Lobova, S. K. Sazonov, S. S. Basok, J. A. K. Howard, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 1192 [Izv. Akad. Nauk, Ser. Khim., 2009, 1161].CrossRefGoogle Scholar
  18. 18.
    A. Gazit, N. Osherov, I. Posner, P. Yaish, E. Poradosu, C. Gilon, A. Levitzki, J. Med. Chem., 1991, 34, 1896.CrossRefGoogle Scholar
  19. 19.
    A. I. Vedernikov, L. G. Kuz’mina, S. K. Sazonov, N. A. Lobova, P. S. Loginov, A. V. Churakov, Yu. A. Strelenko, J. A. K. Howard, M. V. Alfimov, S. P. Gromov, Russ. Chem. Bull. (Int. Ed.), 2007, 56, 1860 [Izv. Akad. Nauk, Ser. Khim., 2007, 1797].CrossRefGoogle Scholar
  20. 20.
    W. H. Melhuish, J. Phys. Chem., 1961, 65, 229.CrossRefGoogle Scholar
  21. 21.
    K. Rechthaler, G. Köhler, Chem. Phys., 1994, 189, 99.CrossRefGoogle Scholar
  22. 22.
    F. L. Arbeloa, P. R. Ojeda, I. L. Arbeloa, J. Luminesc., 1989, 44, 105.CrossRefGoogle Scholar
  23. 23.
    A. A. Granovsky, Firefly Quantum Chemistry Package, Version 8.0; http://classic.chem.msu.ru/gran/firefly/index.html
  24. 24.
    A. A. Granovsky, J. Chem. Phys., 2011, 134, 214113.CrossRefGoogle Scholar
  25. 25.
    M. K. Kuimova, M. Balaz, H. L. Anderson, P. R. Ogilby, J. Am. Chem. Soc., 2009, 131, 7948.CrossRefGoogle Scholar
  26. 26.
    G. D. Titskii, T. S. Gaidash, V. N. Matvienko, A. A. Matveev, Theor. Exp. Chem., 2002, 38, 179.CrossRefGoogle Scholar
  27. 27.
    L. S. Atabekyan, N. A. Lobova, A. I. Vedernikov, S. P. Gromov, A. K. Chibisov, High Energy Chem. (Engl. Transl.), 2012, 46, 100 [Khim. Vys. Energ., 2012, 46, 142].CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • V. V. Volchkov
    • 1
  • M. N. Khimich
    • 1
  • L. D. Uzhinova
    • 1
  • B. M. Uzhinov
    • 1
  • M. Ya. Mel’nikov
    • 1
  • S. P. Gromov
    • 1
    • 2
  • A. I. Vedernikov
    • 2
  • S. K. Sazonov
    • 2
  • M. V. Alfimov
    • 2
  1. 1.Chemistry DepartmentM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Photochemistry CenterRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations