Advertisement

Russian Chemical Bulletin

, Volume 63, Issue 3, pp 572–576 | Cite as

Evaluation of electron affinities of quinone derivatives by density functional theory

  • E. P. NafikovaEmail author
  • N. L. Asfandiarov
  • L. R. Kalimullina
  • Yu. N. El’kin
Full Articles

Abstract

A series of quinone derivatives with experimentally determined energies of vertical electron capture (E va) and (or) adiabatic electron affinities (E a) are studied by density functional theory on the DFT/B3LYP/6-31G(d) level. The calculated π*-MO energies are linearly correlated with the E va values measured by electron transmission spectroscopy and the E a values known from the electron transfer experiment with a correlation coefficient of 0.997. The adiabatic affinities E a of quinone derivatives can be evaluated with acceptable accuracy by the B3LYP/6-31G(d) method using a scaling procedure with the shift.

Key words

electron affinity electron transmission spectroscopy density functional theory (DFT) B3LYP functional quinone derivatives 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. J. Monks, S. S. Lau, Chem. Res. Toxicol., 1997, 10, 1296.CrossRefGoogle Scholar
  2. 2.
    R. Jin, J. Li, Chin, J. Chem., 2012, 30, 84.CrossRefGoogle Scholar
  3. 3.
    E. Vessally, E. Fereyduni, M. Kamaee, S. Moradi, J. Serb. Chem. Soc., 2011, 76, 879.CrossRefGoogle Scholar
  4. 4.
    A. G. M. Tielens, C. Rotte, J. J. van Hellemond, W. Martin, Trs. Biochem. Sci., 2002, 27, 564.CrossRefGoogle Scholar
  5. 5.
    M. M. C. Ferreira, Chemosphere, 2001, 44, 125.CrossRefGoogle Scholar
  6. 6.
    E. Illenberger, J. Momigny, Gaseous Molecular Ions. An Introduction to Elementary Processes Induced by Ionization, Steinkopff Verlag, Darmstadt; Springer-Verlag, New York, 1992, 344 pp.Google Scholar
  7. 7.
    V. I. Khvostenko, Mass-spektrometriya otritsatel’nykh ionov v organicheskoi khimii [Mass Spectrometry of Negativly Charged Ions in Organic Chemistry], Nauka, Moscow, 1980, 160 pp. (in Russian).Google Scholar
  8. 8.
    R. R. Corderman, W. C. Lineberger, Ann. Rev. Phys. Chem., 1979, 30, 347.CrossRefGoogle Scholar
  9. 9.
    P. Kebarle, S. Chowdhury, Chem. Rev., 1987, 7, 513.CrossRefGoogle Scholar
  10. 10.
    G. J. Schulz, Rev. Mod. Phys., 1973, 45, 423.CrossRefGoogle Scholar
  11. 11.
    K. D. Jordan, P. D. Burrow, Chem. Rev., 1987, 7, 557.CrossRefGoogle Scholar
  12. 12.
    S. S. Staley, J. T. Strnad, J. Phys. Chem., 1994, 98, 116.CrossRefGoogle Scholar
  13. 13.
    A. M. Scheer, P. D. Burrow, J. Phys. Chem. B, 2006, 110, 17751.CrossRefGoogle Scholar
  14. 14.
    A. Modelli, Phys. Chem. Chem. Phys., 2003, 5, 2923.CrossRefGoogle Scholar
  15. 15.
    A. Modelli, L. Mussoni, Chem. Phys., 2007, 332, 367.CrossRefGoogle Scholar
  16. 16.
    T. Koopmans, Physica Amsterdam., 1934, 1, 104.CrossRefGoogle Scholar
  17. 17.
    J. M. Younkin, L. J. Smith, R. N. Compton, Theor. Chim. Acta., 1976, 41, 157.CrossRefGoogle Scholar
  18. 18.
    D. A. Chen, G. A. Gallup, J. Chem. Phys., 1990, 93, 8893.CrossRefGoogle Scholar
  19. 19.
    M. N. Mikhailov, N. D. Chuvylkin, I. V. Mishin, L. M. Kustov, Zh. Fiz. Khim., 2009, 83, 868 [Russ. J. Phys. Chem. (Engl. Transl.), 2009, 83].Google Scholar
  20. 20.
    K. Aflatooni, B. Hitt, G. A. Gallup, P. D. Burrow, J. Chem. Phys., 2001, 115, 6489.CrossRefGoogle Scholar
  21. 21.
    K. Aflatooni, G. A. Gallup, P. D. Burrow, J. Phys. Chem. A, 2002, 106, 4703.CrossRefGoogle Scholar
  22. 22.
    A. Modelli, L. Szepes, Chem. Phys., 2003, 286, 165.CrossRefGoogle Scholar
  23. 23.
    A. Modelli, L. Mussoni, D. Fabbri, J. Phys. Chem. A, 2006, 110, 6482.CrossRefGoogle Scholar
  24. 24.
    S. Chowdhury, T. Heinis, E. P. Grimsrud, P. Kebarle, J. Phys. Chem., 1986, 90, 2747.CrossRefGoogle Scholar
  25. 25.
    T. Heinis, S. Chowdhury, Susannah, L. Scott, P. Kebarle, J. Am. Chem. Soc., 1988, 110, 400.CrossRefGoogle Scholar
  26. 26.
    A. Modelli, P. D. Burrow, J. Phys. Chem., 1984, 88, 3550.CrossRefGoogle Scholar
  27. 27.
    S. A. Pshenichnyuk, A. S. Vorob’ev, N. L. Asfandiarov, A. Modelli, J. Chem. Phys., 2010, 132, 244313.CrossRefGoogle Scholar
  28. 28.
    S. A. Pshenichnyuk, A. S. Vorob’ev, A. Modelli, J. Chem. Phys., 2011, 135, 184301.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • E. P. Nafikova
    • 1
    Email author
  • N. L. Asfandiarov
    • 1
    • 2
  • L. R. Kalimullina
    • 2
  • Yu. N. El’kin
    • 3
  1. 1.Institute of Physics of Molecules and CrystalsUral Scientific Center of the Russian Academy of SciencesUfaRussian Federation
  2. 2.Bashkir State Pedagogical UniversityUfaRussian Federation
  3. 3.Pacific Institute of Bioorganic ChemistryFar-Eastern Branch of the Russian Academy of SciencesVladivostokRussian Federation

Personalised recommendations