Advertisement

Russian Chemical Bulletin

, Volume 62, Issue 10, pp 2150–2157 | Cite as

Spectral properties of protonated naphthylpyridine in the presence of cyclodexrins

  • V. B. Nazarov
  • V. G. Avakyan
  • M. V. Fomina
  • A. I. Vedernikov
  • M. V. Alfimov
  • S. P. Gromov
Full Articles

Abstract

Electronic absorption and fluorescence spectroscopy showed that the addition of 2-hydroxypropyl cyclodextrin derivatives (HP-α-CD, HP-β-CD, and HP-γ-CD) to an aqueous solution of 4-(2-naphthyl)pyridinium perchlorate (2) results in its partial deprotonation and formation of an inclusion complex of 4-(2-naphthyl)pyridine (1) with the cavitand. The stoichiometry and stability of the inclusion complexes of compounds 1 and 2 and 1-methyl-4-(2-naphthyl)-pyridinium perchlorate (3) with cyclodextrins and their hydroxypropyl derivatives (logK = = 1.5–2.7) were studied by 1H NMR titration. Cyclodextrins with the neutral form 1 form more stable complexes than with ionic compounds 2 and 3. The protonation of the nitrogen atom of compound 2 in aqueous solutions can occur in both the ground and excited states, and the fluorescence spectrum exhibits only the band of the protonated form. Quantum chemical simulation of the deprotonation/protonation processes in an aqueous solution of compound 2 in the absence and presence of HP-β-CD was performed. A tendency for shifting the acid-base equilibrium towards the formation of deprotonated form 1 is observed upon the addition of 2-hydroxypropyl cyclodextrin derivatives to the solution.

Key words

naphthylpyridine cyclodextrins deprotonation inclusion complexes stability constants absorption spectroscopy quantum chemical simulation PM3 method NMR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Creed, J. Photochem. Photobiol., 1984, 39, 537.CrossRefGoogle Scholar
  2. 2.
    A. L. Sobolewski, W. Domcke, J. Phys. Chem. A, 2001, 105, 9275.CrossRefGoogle Scholar
  3. 3.
    H. Mishra, H. C. Joshi, H. B. Tripathi, S. Maheshwary, N. Sathyamurthy, M. Panda, J. Chandrasekhar, J. Photochem. Photobiol. A: Chem., 2001, 139, 23.CrossRefGoogle Scholar
  4. 4.
    R. Casadesús, M. Moreno, J. M. Luch, Chem. Phys. Lett., 2002, 356, 423.CrossRefGoogle Scholar
  5. 5.
    Q. Wang, F. Gao, H. Li, S. Zhang, Chin. J. Chem., 2010, 28, 901.CrossRefGoogle Scholar
  6. 6.
    T. D. Nekipelova, High Energy Chem. (Engl. Transl.), 2010, 44, 290 [Khim. Vys. Energ., 2010, 44, 319].CrossRefGoogle Scholar
  7. 7.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, M. V. Fomina, T. G. Vershinnikova, M. V. Alfimov, Russ. Chem. Bull. (Int. Ed.), 2004, 53, 2525 [Izv. Akad. Nauk, Ser. Khim., 2004, 2420].CrossRefGoogle Scholar
  8. 8.
    V. B. Nazarov, V. G. Avakian, S. P. Gromov, M. V. Fomina, T. G. Vershinnikova, V. Yu. Rudyak, M. V. Alfimov, Russ. Chem. Bull. (Int. Ed.), 2007, 56, 281 [Izv. Akad. Nauk, Ser. Khim., 2007, 272].CrossRefGoogle Scholar
  9. 9.
    V. B. Nazarov, V. G. Avakian, S. P. Gromov, A. I. Vedernikov, M. V. Fomina, T. G. Vershinnikova, V. Yu. Gak, N. A. Lobova, V. Yu. Rudyak, M. V. Alfimov, Russ. Chem. Bull. (Int. Ed.), 2010, 59, 941 [Izv. Akad. Nauk, Ser. Khim., 2010, 919].CrossRefGoogle Scholar
  10. 10.
    S. P. Gromov, V. B. Nazarov, V. G. Avakyan, M. V. Fomina, A. I. Vedernikov, L. G. Kuzmina, T. G. Vershinnikova, N. A. Lobova, V. Yu. Rudyak, M. V. Alfimov, J. A. K. Howard, J. Photochem. Photobiol. A: Chem., 2011, 217, 87.CrossRefGoogle Scholar
  11. 11.
    S. P. Gromov, M. V. Fomina, Russ. Chem. Bull. (Int. Ed.), 2004, 53, 901 [Izv. Akad. Nauk, Ser. Khim., 2004, 864].CrossRefGoogle Scholar
  12. 12.
    C. Frassineti, S. Ghelli, P. Gans, A. Sabatini, M. S. Moruzzi, A. Vacca, Anal. Biochem., 1995, 231, 374.CrossRefGoogle Scholar
  13. 13.
    J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209.CrossRefGoogle Scholar
  14. 14.
    V. B. Nazarov, V. G. Avakyan, M. V. Alfimov, Ros. nanotekhnologii [Russian Nanotechnologies], 2007, 2, 68 (in Russian).Google Scholar
  15. 15.
    V. G. Avakyan, V. B. Nazarov, M. V. Alfimov, in Naphthalene. Structure, Properties, and Applications, Eds G. I. Antsyforov, A. F. Ivanski, Nova Science Publishers, Inc., New York, 2012, p. 127.Google Scholar
  16. 16.
    B. Kallies, R. Mitzner, J. Mol. Model., 1995, 1, 68.CrossRefGoogle Scholar
  17. 17.
    C. W. Yong, C. Washington, W. Smith, Pharm. Res., 2008, 25, 1092.CrossRefGoogle Scholar
  18. 18.
    H.-J. Schneider, F. Hacket, V. Rüdiger, H. Ikeda, Chem. Rev., 1998, 98, 1755.CrossRefGoogle Scholar
  19. 19.
    M. C. Sicilia, A. Nino, C. Munoz-Caro, J. Phys. Chem. A, 2005, 109, 8341.CrossRefGoogle Scholar
  20. 20.
    F. H. Allen, O. Kennard, R. Taylor, Acc. Chem. Res., 1983, 16, 146.CrossRefGoogle Scholar
  21. 21.
    J. Van De Streek, Acta Crystallogr., Sect. B, 2006, B62, 567.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • V. B. Nazarov
    • 1
  • V. G. Avakyan
    • 2
  • M. V. Fomina
    • 2
  • A. I. Vedernikov
    • 2
  • M. V. Alfimov
    • 2
  • S. P. Gromov
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.Photochemistry CenterRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations