Advertisement

Russian Chemical Bulletin

, Volume 61, Issue 7, pp 1313–1320 | Cite as

Asymmetric organocatalysis: from proline to highly efficient immobilized organocatalysts

  • A. S. Kucherenko
  • D. E. Siyutkin
  • O. V. Maltsev
  • S. V. Kochetkov
  • S. G. Zlotin
Reviews

Abstract

The recent results of the authors’ research group on the application of chiral ionic liquids and related compounds as recoverable organocatalysts of asymmetric reactions are reviewed.

Key words

asymmetric organocatalysis immobilized organocatalysts ionic liquids water aldol reactions Michael reactions biologically active substances mass spectrometry 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Dondoni, A. Massi, Angew. Chem., Int. Ed., 2008, 47, 4638.CrossRefGoogle Scholar
  2. 2.
    A. Berkessel, H. Groger, Asymmetric Organocatalysis: From Biomimetic Concepts to Application in Asymmetric Synthesis, Wiley-VCH, Weinheim, 2005, 435 pp.CrossRefGoogle Scholar
  3. 3.
    Enantioselective Organocatalysis: Reactions and Experimental Procedures, Ed. P. I. Dalko, Wiley-VCH, Weinheim, 2007, 536 pp.Google Scholar
  4. 4.
    S. Mukherjee, J. W. Yang, S. Hoffmann, B. List, Chem. Rev., 2007, 107, 5471.CrossRefGoogle Scholar
  5. 5.
    B. List, R. A. Lerner, C. F. Barbas III, J. Am. Chem. Soc., 2000, 122, 2395.CrossRefGoogle Scholar
  6. 6.
    B. List, J. Am. Chem. Soc., 2000, 122, 9336.CrossRefGoogle Scholar
  7. 7.
    S. J. Connon, Chem. Commun., 2008, 44, 2499.CrossRefGoogle Scholar
  8. 8.
    S. Jew, H. Park, Chem. Commun., 2009, 45, 7090.CrossRefGoogle Scholar
  9. 9.
    Y. Shi, Acc. Chem. Res., 2004, 37, 488.CrossRefGoogle Scholar
  10. 10.
    D. J. Ager, K. Anderson, E. Oblinger, Y. Shi, J. Vander-Roest, Org. Process Res. Dev., 2007, 11, 44.CrossRefGoogle Scholar
  11. 11.
    T. Lehnert, G. Özüduru, H. Grugel, F. Albrecht, S. M. Telligmann, M. M. K. Boysen, Synthesis, 2011, 2685.Google Scholar
  12. 12.
    R. A. Sheldon, Chem. Commun., 2008, 3352.Google Scholar
  13. 13.
    M. Benaglia, A. Puglisi, F. Cozzi, Chem. Rev., 2003, 103, 3401.CrossRefGoogle Scholar
  14. 14.
    M. Gruttadauria, F. Giacalone, R. Noto, Chem. Soc. Rev., 2008, 37, 1666.CrossRefGoogle Scholar
  15. 15.
    T. E. Kristensen, T. Hansen. Eur. J. Org. Chem., 2010, 3179.Google Scholar
  16. 16.
    A. F. Trindade, P. M. P. Gois, C. A. M. Afonso, Chem. Rev., 2009, 109, 418.CrossRefGoogle Scholar
  17. 17.
    K. Mitsui, S. A. Hyatt, D. A. Turner, C. M. Hadad, J. R. Parkuette, Chem. Commun., 2009, 3261.Google Scholar
  18. 18.
    Y. Wu, Y. Zhang, M. Yu, G. Zhao, S. Wang, Org. Lett., 2006, 8, 4417.CrossRefGoogle Scholar
  19. 19.
    P. D. de María, Angew. Chem., Int. Ed., 2008, 47, 6960.CrossRefGoogle Scholar
  20. 20.
    S. Luo, L. Zhang, J.-P. Cheng, Chem. Asian J., 2009, 4, 1184.CrossRefGoogle Scholar
  21. 21.
    S. G. Zlotin, N. N. Makhova, Mendeleev Commun., 2010, 20, 63.CrossRefGoogle Scholar
  22. 22.
    S. G. Zlotin, N. N. Makhova, Russ. Chem. Rev., 2010, 79, 543 [Usp. Khim., 2010, 79, 603].Google Scholar
  23. 23.
    L. Zhang, S. Luo, J.-P. Cheng, Catal. Sci. Technol., 2011, 1, 507.CrossRefGoogle Scholar
  24. 24.
    B. Ni, A. D. Headley, Chem. Eur. J., 2010, 16, 4426.CrossRefGoogle Scholar
  25. 25.
    L. J. Whalen, C.-H. Wong, Aldrichim. Acta, 2006, 39, 63.Google Scholar
  26. 26.
    S. G. Zlotin, A. S. Kucherenko, I. P. Beletskaya, Russ. Chem. Rev., 2009, 78, 737 [Usp. Khim., 2009, 78, 796].CrossRefGoogle Scholar
  27. 27.
    B. M. Trost, C. S. Brindle, Chem. Soc. Rev., 2010, 39, 1600.CrossRefGoogle Scholar
  28. 28.
    D. Almasi, D. A. Alonso, C. Najera, Tetrahedron: Asymmetry, 2007, 18, 299.CrossRefGoogle Scholar
  29. 29.
    O. V. Maltsev, I. P. Beletskaya, S. G. Zlotin, Russ. Chem. Rev., 2011, 80, 1067 [Usp. Khim., 2011, 80, 1119].CrossRefGoogle Scholar
  30. 30.
    A. S. Kucherenko, D. E. Siyutkin, V. O. Muraviev, M. I. Struchkova, S. G. Zlotin, Mendeleev Commun., 2007, 17, 277.CrossRefGoogle Scholar
  31. 31.
    A. S. Kucherenko, D. E. Siyutkin, S. G. Zlotin, Russ. Chem. Bull. (Int. Ed.), 2008, 58, 591 [Izv. Akad. Nauk, Ser. Khim., 2008, 578].CrossRefGoogle Scholar
  32. 32.
    A. S. Kucherenko, M. I. Struchkova, S. G. Zlotin, Eur. J. Org. Chem., 2006, 2000.Google Scholar
  33. 33.
    E. V. Starodubtseva, O. V. Turova, M. G. Vinogradov, V. A. Ferapontov, I. V. Razmanov, S. G. Zlotin, A. S. Kucherenko, Mendeleev Commun., 2007, 17, 20CrossRefGoogle Scholar
  34. 34.
    D. E. Siyutkin, A. S. Kucherenko, M. I. Struchkova, S. G. Zlotin, Tetrahedron Lett., 2008, 49, 1212.CrossRefGoogle Scholar
  35. 35.
    D. E. Siyutkin, A. S. Kucherenko, S. G. Zlotin, Tetrahedron, 2009, 65, 1366.CrossRefGoogle Scholar
  36. 36.
    D. E. Siyutkin, A. S. Kucherenko, S. G. Zlotin, Russ. Chem. Bull. (Int. Ed.), 2009, 58, 1899 [Izv. Akad. Nauk, Ser. Khim., 2009, 1839].CrossRefGoogle Scholar
  37. 37.
    S. G. Zlotin, G. V. Kryshtal, G. M. Zhdankina, A. S. Kucherenko, A. V. Bogolyubov, D. E. Siyutkin, Pure Appl. Chem., 2009, 81, 2059.CrossRefGoogle Scholar
  38. 38.
    M. C. Pirrung, Chem.Eur. J., 2006, 12, 1312.CrossRefGoogle Scholar
  39. 39.
    M. Raj, V. Maya, S. K. Ginotra, V. K. Singh, Org. Lett., 2006, 8, 4097.CrossRefGoogle Scholar
  40. 40.
    V. Maya, M. Raj, V. K. Singh, Org. Lett., 2007, 9, 2593.CrossRefGoogle Scholar
  41. 41.
    X. Liu, L. Lin, X. Feng, Chem. Commun., 2009, 45, 6145.CrossRefGoogle Scholar
  42. 42.
    X.-H. Chen, J. Yu, L.-Z. Gong, Chem. Commun., 2010, 46, 6437.CrossRefGoogle Scholar
  43. 43.
    D. E. Siyutkin, A. S. Kucherenko, S. G. Zlotin, Tetrahedron, 2010, 66, 513.CrossRefGoogle Scholar
  44. 44.
    S. V. Kochetkov, A. S. Kucherenko, S. G. Zlotin, Eur. J. Org. Chem., 2011, 6128.Google Scholar
  45. 45.
    N. A. Larionova, A. S. Kucherenko, D. E. Siyutkin, S. G. Zlotin, Tetrahedron, 2011, 67, 1948.CrossRefGoogle Scholar
  46. 46.
    A. Erkkilä, I. Majander, P. M. Pihko, Chem. Rev., 2007, 107, 5416.CrossRefGoogle Scholar
  47. 47.
    Y. Li, X.-Y. Liu, G. Zhao, Tetrahedron: Asymmetry, 2006, 17, 2034.CrossRefGoogle Scholar
  48. 48.
    M. C. Varela, S. M. Dixon, K. S. Lam, N. E. Schore, Tetrahedron, 2008, 64, 10087.CrossRefGoogle Scholar
  49. 49.
    O. V. Maltsev, A. S. Kucherenko, S. G. Zlotin, Eur. J. Org. Chem., 2009, 5134.Google Scholar
  50. 50.
    S. Brandau, A. Landa, J. Franzen, M. Marigo, K. A. Jørgensen, Angew.Chem., Int. Ed., 2006, 45, 4305.CrossRefGoogle Scholar
  51. 51.
    O. V. Maltsev, A. S. Kucherenko, I. P. Beletskaya, V. A. Tartakovsky, S. G. Zlotin, Eur. J. Org. Chem., 2010, 2927.Google Scholar
  52. 52.
    O. V. Maltsev, A. S. Kucherenko, S. G. Zlotin, Mendeleev Commun., 2011, 21, 146.CrossRefGoogle Scholar
  53. 53.
    O. V. Maltsev, A. S. Kucherenko, A. L. Chimishkyan, S. G. Zlotin, Tetrahedron: Asymmetry, 2010, 21, 2659.CrossRefGoogle Scholar
  54. 54.
    M. Dambrova, L. Zvejniece, E. Liepinsh, H. Cirule, O. Zharkova, G. Veinberg, I. Kalvinsh, Eur. J. Pharmacol., 2008, 583, 128.CrossRefGoogle Scholar
  55. 55.
    D. F. Smith, J. Neural Transm., 1984, 60, 63.CrossRefGoogle Scholar
  56. 56.
    C. A. Parker, J. C. Matthews, R. N. Gunn, L. Martarello, V. J. Cunningham, D. Dommett, S. T. Knibb, D. Bender, S. Jakobsen, J. Brown, A. D. Gee, Synapse, 2005, 55, 270.CrossRefGoogle Scholar
  57. 57.
    K. Achilles, T. Schirmeister, H.-H. Otto, Arch. Pharm. Pharm. Med. Chem., 2000, 333, 243.CrossRefGoogle Scholar
  58. 58.
    J. A. Patch, A. E. Barron, Curr. Opin. Chem. Biol., 2002, 6, 872.CrossRefGoogle Scholar
  59. 59.
    J. Ogawa, J. Mano, T. Hagishita, S. Shimizu, J. Mol. Catal. B: Enzym., 2009, 60, 138.CrossRefGoogle Scholar
  60. 60.
    D. Seebach, A. K. Beck, S. Capone, G. Deniau, U. Gro elj, E. Zass, Synthesis, 2009, 1.Google Scholar
  61. 61.
    O. V. Maltsev, A. O. Chizhov, S. G. Zlotin, Chem. Eur. J., 2011, 17, 6109.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  • A. S. Kucherenko
    • 1
  • D. E. Siyutkin
    • 1
  • O. V. Maltsev
    • 1
  • S. V. Kochetkov
    • 1
  • S. G. Zlotin
    • 1
  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations