Russian Chemical Bulletin

, Volume 60, Issue 11, pp 2418–2424 | Cite as

One-class approach: models for virtual screening of non-nucleoside HIV-1 reverse transcriptase inhibitors based on the concept of continuous molecular fields

  • P. V. Karpov
  • I. I. Baskin
  • N. I. Zhokhova
  • M. B. Nawrozkij
  • A. N. Zefirov
  • A. S. Yablokov
  • I. A. Novakov
  • N. S. Zefirov
Full Articles

Abstract

One-class models for virtual screening of potent non-nucleoside HIV reverse transcriptase inhibitors were built for the first time in terms of the one-class approach using the support vector machine method. The training set included 786 structures of 2-substituted pyrimidinones and their inhibitory activity against the enzyme of wild-type and mutant (K103, IRLL98, Y188L) HIV-1 strains. The representation of molecular structures of organic ligands based on continuous molecular fields can be used to build classification models of higher quality compared to conventional approaches using Carhart fragment-based descriptors, molecular fingerprints, and spectrophores.

Key words

organic compounds reverse transcriptase inhibitors HIV HIV-RT one-class classification virtual screening continuous molecular fields modeling of biological activity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. Barbaro, A. Scozzafava, A. Mastrolorenzo, C. T. Supuran, Curr. Pharm. Design, 2005, 11, 1805.CrossRefGoogle Scholar
  2. 2.
    E. De Clercq, J. Med. Chem., 2005, 48, 1.CrossRefGoogle Scholar
  3. 3.
    M. B. Nawrozkij, D. Rotili, D. Tarantino, G. Botta, A. S. Eremiychuk, I. Musmuca, R. Ragno, A. Samuele, S. Zanoli, M. Armand-Ugón, I. Clotet-Codina, I. A. Novakov, B. S. Orlinson, G. Maga, J. A. Esté, M. Artico, A. Mai, J. Med. Chem., 2008, 51, 4641.CrossRefGoogle Scholar
  4. 4.
    R. Garg, S. P. Gupta, H. Gao, M. S. Babu, A. K. Debnath, C. Hansch, Chem. Rev., 1999, 99, 3525.CrossRefGoogle Scholar
  5. 5.
    G. Gini, M. V. Craciun, C. König, J. Chem. Inf. Comput. Sci., 2004, 44, 1897.Google Scholar
  6. 6.
    L. Bruno-Blanch, J. Galvez, R. García-Domenech, Bioorg. Med. Chem. Lett., 2003, 13, 2749.CrossRefGoogle Scholar
  7. 7.
    S. Rodgers, J. Chem. Inf. Model., 2006, 46, 569.CrossRefGoogle Scholar
  8. 8.
    B. Su, M. Shen, E. X. Esposito, A. J. Hopfinger, Y. J. Tseng, J. Chem. Inf. Model., 2010, 50, 1304.CrossRefGoogle Scholar
  9. 9.
    P. V. Karpov, I. I. Baskin, V. A. Palyulin, N. S. Zefirov, Dokl. AN, 2011, 437, 642 [Dokl. Chem. (Engl. Transl.), 2011, 437, 107].Google Scholar
  10. 10.
    I. I. Baskin, N. Kireeva, A. Varnek, Mol. Inf., 2010, 29, 581.CrossRefGoogle Scholar
  11. 11.
    N. Fechner, A. Jahn, G. Hinselmann, A. Zell, J. Cheminform., 2010, 2, 2.CrossRefGoogle Scholar
  12. 12.
    P. Bultinck, W. Langenaeker, P. Lahorte, F. De Proft, P. Geerlings, C. Van Alsenoy, J. P. Tollenaere, J. Phys. Chem. A, 2002, 106, 7895.CrossRefGoogle Scholar
  13. 13.
    P. Bultinck, W. Langenaeker, R. Carbó-Dorca, J. P. Tollenaere, J. Chem. Inf. Comput. Sci., 2003, 43, 422.Google Scholar
  14. 14.
    R. E. Carhart, D. H. Smith, R. Ventkataraghavan, J. Chem. Inf. Comput. Sci., 1985, 25, 64.Google Scholar
  15. 15.
    P. M. Vasil’ev, A. A. Spasov, Ros. Khim. Zh., 2006, No. 2, 108 [Mendeleev Chem. J., 2006, No. 2 (in Russian)].Google Scholar
  16. 16.
    N. I. Zhokhova, I. I. Baskin, D. K. Bakhronov, V. A. Palyulin, N. S. Zefirov, Dokl. AN, 2009, 429, 201 [Dokl. Chem. (Engl. Transl.), 2009, 429, 273].Google Scholar
  17. 17.
    R. Guha, M. T. Howard, G. R. Hutchison, P. Murray-Rust, H. Rzepa, C. Steinbeck, J. K. Wegner, E. L. Willighagen, J. Chem. Inf. Model., 2006, 46, 991.CrossRefGoogle Scholar
  18. 18.
    N. V. Artemenko, I. I. Baskin, V. A. Palyulin, N. S. Zefirov, Dokl. AN, 2001, 381, 203 [Dokl. Chem. (Engl. Transl.), 2001, 381, 317].Google Scholar
  19. 19.
    T. Fawcett, Pattern Recognition Lett., 2006, 27, 861.CrossRefGoogle Scholar
  20. 20.
    S. K. Kearsley, G. M. Smith, Tetrahedron Computer Methodology, 1990, 3, 615.CrossRefGoogle Scholar
  21. 21.
    N. Huang, K. Shoichet, J. J. Irwing, J. Med. Chem., 2006, 49, 6789.CrossRefGoogle Scholar
  22. 22.
    Pang-Ning Tan, M. Steinback, V. Kumar, Introduction to Data Mining, Publisher: Addision-Wesley, 2006, 769 pp.Google Scholar
  23. 23.
    R. Todeschini, V. Consonni, Handbook of Molecular Descriptors, Wiley-VCH, Weinheim, 2000, 667.CrossRefGoogle Scholar
  24. 24.
    I. Baskin, A. Varnek, in Chemoinformatics Approaches to Virtual Screening, RCS Publishing, 2008, 338, 1.CrossRefGoogle Scholar
  25. 25.
    P. Mahé, N. Ueda, T. Akutsu, J.-L. Perret, J.-P. Vert, J. Chem. Inf. Model., 2005, 45, 939.CrossRefGoogle Scholar
  26. 26.
    P. V. Karpov, I. I. Baskin, N. I. Zhokhova, H. C. Zefirov, Dokl. AN, 2011, 440, 480 [Dokl. Chem. (Engl. Transl.), 2011, 263].Google Scholar
  27. 27.
    V. Venkatraman, V. I. Perez-Nueno, L. Mavridis, D. W. Ritchie, J. Chem. Inf. Model., 2010, 50, 2079.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • P. V. Karpov
    • 1
  • I. I. Baskin
    • 1
  • N. I. Zhokhova
    • 1
  • M. B. Nawrozkij
    • 2
  • A. N. Zefirov
    • 1
  • A. S. Yablokov
    • 2
  • I. A. Novakov
    • 2
  • N. S. Zefirov
    • 1
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.Volgograd State Technical UniversityVolgogradRussian Federation

Personalised recommendations