Russian Chemical Bulletin

, Volume 60, Issue 6, pp 1112–1117 | Cite as

On the state of CH4 molecule in the octahedral void of C60 fullerite

  • Yu. M. Shul’ga
  • A. F. Shestakov
  • V. M. Martynenko
  • S. A. Baskakov
  • N. Yu. Trifonov
  • E. M. Anokhin
  • A. V. Maksimychev
Full Articles

Abstract

Methane-intercalated fullerite (CH4)0.56C60 was obtained by low-temperature precipitation from solution. Methane transition from the gas phase to the octahedral void of fullerite is accompanied by a bathochromic shift of normal vibrational frequencies (by 19 and 8 cm−1 for ν3 and ν4, respectively). The methane 13C signal in the proton decoupling 13C NMR spectrum is observed as a singlet at δ−0.42. According to quantum chemical calculations using density functional theory, location of methane in the octahedral void of fullerite (C60)6 leads to a decrease in the total energy of fullerite by 4 kcal mol−1.

Key words

methane-intercalated fullerite C60 IR spectroscopy Raman spectroscopy NMR spectroscopy quantum chemical calculations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. S. Miller, Adv. Mater., 1991, 3, 262.CrossRefGoogle Scholar
  2. 2.
    G. E. Gadd, S. Moricca, S. J. Kennedy, M. M. Elcombe, P. J. Evans, M. Blackford, D. Cassidy, C. J. Howard, P. Prasad, J. V. Hanna, A. Burchwood, D. Levy, J. Phys. Chem. Solids, 1997, 58, 1823.CrossRefGoogle Scholar
  3. 3.
    Yu. M. Shul’ga, V. M. Martynenko, S. N. Polyakov, N. V. Chelovskaya, V. V. Open’ko, E. V. Skokan, L. N. Blinova, Yu. A. Dobrovol’skii, Yu. G. Morozov, V. F. Razumov, D. V. Shchur, Zh. Neorg. Khim., 2009, 54, 387 [Russ. J. Inorg. Chem. (Engl. Transl.), 2009, 54, 341].Google Scholar
  4. 4.
    G. E. Gadd, M. Blackford, S. Moricca, N. Webb, P. J. Evans, A. M. Smith, G. Jacobsen, S. Leung, A. Day, Q. Hua, Science, 1997, 277, 933.CrossRefGoogle Scholar
  5. 5.
    G. E. Gadd, P. J. Evans, S. Kennedy, M. James, M. Elcombe, D. Cassidy, S. Moricca, J. Holmes, N. Webb, A. Dixon, P. Prasad, Fullerene Sci. Technol., 1999, 7, 1043.CrossRefGoogle Scholar
  6. 6.
    B. Morosin, R. A. Assink, R. G. Dunn, T. M. Massis, E. J. Schirber, G. H. Kwei, Phys. Rev. B: Condens. Matter, 1997, 56, 13611.CrossRefGoogle Scholar
  7. 7.
    G. H. Kwei, F. Trouw, B. Morosin, H. F. King, J. Chem. Phys., 2000, 113, 320.CrossRefGoogle Scholar
  8. 8.
    Yu. M. Shul’ga, V. E. Muradyan, V. M. Martynenko, B. P. Tarasov, N. V. Polyakova, Mass-Spektrometriya [Mass Spectrometry], 2005, 2, 41 (in Russian).Google Scholar
  9. 9.
    A. V. Dolbin, V. B. Esel’son, V. G. Gavrilko, V. G. Manzhelii, N. A. Vinnikov, G. E. Gadd, S. Moricca, D. Cassidy, B. Sundqvist, J. Low Temp. Phys., 2007, 33, 1068.CrossRefGoogle Scholar
  10. 10.
    A. V. Dolbin, N. A. Vinnikov, V. G. Gavrilko, V. B. Esel’son, V. G. Manzhelii, G. E. Gadd, S. Moricca, D. Cassidy, B. Sundqvist, J. Low Temp. Phys., 2009, 35, 226.CrossRefGoogle Scholar
  11. 11.
    Yu. M. Shul’ga, V. M. Martynenko, A. F. Shestakov, S. A. Baskakov, V. N. Vasilets, Yu. G. Morozov, Izv. Akad. Nauk. Ser. Khim., 2006, 662 [Russ. Chem. Bull., Int. Ed., 2006, 55, 687].Google Scholar
  12. 12.
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  13. 13.
    H. Basch, P. G. Jasien, Can. J. Chem., 1992, 70, 612.Google Scholar
  14. 14.
    D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.CrossRefGoogle Scholar
  15. 15.
    D. S. Bethune, G. Meijer, W. C. Tang, H. J. Rosen, W. G. Golden, H. Seki, C. A. Brown, M. S. de Vries, Chem. Phys. Lett., 1991, 179, 181.CrossRefGoogle Scholar
  16. 16.
    J. de Vries, H. Steger, B. Kamke, C. Menzel, B. Weisser, W. Kamke, I. V. Hertel, Chem. Phys. Lett., 1992, 188, 159.CrossRefGoogle Scholar
  17. 17.
    X. B. Wang, C. F. Ding, L. S. Wang, J. Chem. Phys., 1999, 110, 8217.CrossRefGoogle Scholar
  18. 18.
    R. Antoine, Ph. Dugourd, D. Rayane, E. Benichou, M. Broyer, F. Chandezon, C. Guet, J. Chem. Phys., 1999, 110, 9771.CrossRefGoogle Scholar
  19. 19.
    K. Kowalski, J. R. Hammond, W. A. de Jong, A. J. Sadlej, J. Chem. Phys., 2008, 129, 226101.CrossRefGoogle Scholar
  20. 20.
    P. Bowmar, W. Hayes, M. Kurmoo, P. A. Pattenden, M. A. Green, P. Day, K. Kikuchi, J. Phys. Condens. Matter, 1994, 6, 3161.CrossRefGoogle Scholar
  21. 21.
    D. A. Dixon, B. E. Chase, G. Fitzgerald, N. Matsuzawa, J. Phys. Chem., 1995, 99, 4486.CrossRefGoogle Scholar
  22. 22.
    K. Nakamoto, Infrared Spectra of Inorganic and Coordination Compounds, Wiley, New York, 1963.Google Scholar
  23. 23.
    A. K. Sum, R. C. Burruss, E. Dendy Sloan, Jr., J. Phys. Chem. B, 1997, 101, 7371.CrossRefGoogle Scholar
  24. 24.
    S. Nakano, M. Moritoki, K. Ohgaki, J. Chem. Eng. Data, 1999, 44, 254.CrossRefGoogle Scholar
  25. 25.
    G. E. Gadd, S. Moricca, S. J. Kennedy, M. M. Elcombe, P. J. Evans, M. Blackford, D. Cassidy, C. J. Howard, P. Prasad, J. V. Hanna, A. Burchwood, D. Levy, J. Phys. Chem. Solids, 1997, 58, 1823.CrossRefGoogle Scholar
  26. 26.
    R. A. Assink, J. E. Shirber, D. A. Loy, B. Morosin, G. Carlson, J. Mater. Res., 1992, 7, 2136.CrossRefGoogle Scholar
  27. 27.
    C. S. Yannoni, R. D. Johnson, G. Meijer, D. S. Bethune, J. R. Salem, J. Phys. Chem., 1991, 95, 9.CrossRefGoogle Scholar
  28. 28.
    A. Antušek, D. Kedziera, K. Jackowski, M. Jaszunski, W. Makulski, Chem. Phys., 2008, 352, 320.CrossRefGoogle Scholar
  29. 29.
    T. A. Ruden, O. B. Lutnæ, T. Helgaker, K. Ruud, J. Chem. Phys., 2003, 118, 9572.CrossRefGoogle Scholar
  30. 30.
    A. Antušek, K. Jackowski, M. Jaszunski, W. Makulski, M. Wilczek, Chem. Phys. Lett., 2005, 411, 111.CrossRefGoogle Scholar
  31. 31.
    S. F. Dec, K. E. Bowler, L. L. Stadterman, C. A. Koh, E. D. Sloan, J. Phys. Chem. A, 2007, 111, 4297.CrossRefGoogle Scholar
  32. 32.
    Y.-T. Seo, H. Lee, Korean J. Chem. Eng., 2003, 20, 1085.CrossRefGoogle Scholar
  33. 33.
    S. F. Dec, K. E. Bowler, L. L. Stadterman, C. A. Koh, E. D. Sloan, Jr., J. Am. Chem. Soc., 2006, 128, 415.CrossRefGoogle Scholar
  34. 34.
    A. Gupta, S. F. Dec, C. A. Koh, E. D. Sloan, Jr., J. Phys. Chem. C, 2007, 111, 2341.CrossRefGoogle Scholar
  35. 35.
    N. J. R. van E. Hommes, T. Clark, J. Mol. Model., 2005, 11, 175.CrossRefGoogle Scholar
  36. 36.
    F. Tournus, J.-C. Charlier, P. Mélinon, J. Chem. Phys., 2005, 122, 094315.CrossRefGoogle Scholar
  37. 37.
    J. M. Pacheco, J. P. P. Ramalho, Phys. Rev. Lett., 1979, 79, 3873.CrossRefGoogle Scholar
  38. 38.
    J. P. K. Doye, D. J. Wales, W. Branz, F. Calvo, Phys. Rev. B: Condens. Matter, 2001, 64, 235409.CrossRefGoogle Scholar
  39. 39.
    C. Pan, M. P. Sampson, Y. Chai, R. H. Hauge, J. L. Margrave, J. Phys. Chem., 1991, 95, 2944.CrossRefGoogle Scholar
  40. 40.
    M. Hasegawa, K. Nishidate, M. Katayama, T. Inaoka, J. Chem. Phys., 2003, 119, 1386.CrossRefGoogle Scholar
  41. 41.
    Q. Wuand, W. Yang, J. Chem. Phys., 2002, 116, 515.CrossRefGoogle Scholar
  42. 42.
    K. T. Tang, Phys. Rev., 1969, 177, 108.CrossRefGoogle Scholar
  43. 43.
    A. Ricca, C. W. Bauschlicher, Chem. Phys., 2006, 324, 455.CrossRefGoogle Scholar
  44. 44.
    A. J. Thomy, Chim. Physique, 1970, 67, 1101.Google Scholar
  45. 45.
    M. Muris, N. Dufau, M. Bienfait, N. Dupont-Pavlovsky, Y. Grillet, J. P. Palmari, Langmuir, 2000, 16, 7019.CrossRefGoogle Scholar
  46. 46.
    M. Tomaselli, Mol. Phys., 2003, 101, 3029.CrossRefGoogle Scholar
  47. 47.
    P. Siuda, J. Sadlej, J. Phys. Chem. A, 2011, 115, 612.CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • Yu. M. Shul’ga
    • 1
  • A. F. Shestakov
    • 1
  • V. M. Martynenko
    • 1
  • S. A. Baskakov
    • 1
  • N. Yu. Trifonov
    • 1
  • E. M. Anokhin
    • 2
  • A. V. Maksimychev
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.Moscow Institute of Physics and TechnologyDolgoprudny, Moscow RegionRussian Federation

Personalised recommendations