Advertisement

Russian Chemical Bulletin

, Volume 59, Issue 6, pp 1217–1224 | Cite as

Structures and sorption properties of the coordination polymers built up of 3d metal carboxylate polynuclear complexes

  • R. A. Polunin
  • S. V. KolotilovEmail author
  • M. A. Kiskin
  • K. S. Gavrilenko
  • L. Ouahab
  • I. L. Eremenko
  • V. M. Novotortsev
  • V. V. Pavlishchuk
Full Articles

Abstract

The reaction of trinuclear acetate complexes Fe2MO(AcO)6(H2O)3 (M = Ni2+, Co2+) with 4,4′-bipyridine (bpy) results, depending on the reaction conditions, in porous coordination polymers with the composition Fe2MO(AcO)6(bpy)1.5 (with retention of the metal core Fe2MO(AcO)6) or nonporous coordination polymers with the composition M2(AcO)4(bpy)2 (with destruction of the metal core Fe2MO(AcO)6). The adsorption and desorption properties of the compounds Fe2MO(AcO)6(bpy)1.5 with respect to nitrogen and hydrogen were studied. The reaction of hexanuclear benzoate complex Mn6O2(PhCOO)10(MeCN)4 with bpy or trans-1,2-bis(4-pyridyl)ethylene (bpe) in DMF results in destruction of the metal core Mn6O2(PhCOO)10 and formation of nonporous coordination polymers, while the pivalate complex Mn6O2(Piv)10(EtOH)3(HPiv) under the same conditions gives rise to the coordination polymer containing Mn6O2(Piv)10 structural blocks.

Key words

coordination polymers polynuclear complexes nitrogen adsorption hydrogen adsorption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. Ouahab, T. Enoki, Eur. J. Inorg. Chem., 2004, 933.Google Scholar
  2. 2.
    D. Maspoch, N. Domingo, N. Roques, K. Wurst, J. Tejada, C. Rovira, D. Ruiz-Molina, J. Veciana, Chem. Eur. J., 2007, 13, 8153.CrossRefGoogle Scholar
  3. 3.
    L. G. Beauvais, M. P. Shores, J. R. Long, J. Am. Chem. Soc., 2000, 122, 2763.CrossRefGoogle Scholar
  4. 4.
    A. C. Sudik, A. R. Millward, N. W. Ockwig, A. P. Côté, J. Kim, O. M. Yaghi, J. Am. Chem. Soc., 2005, 127, 7110.CrossRefGoogle Scholar
  5. 5.
    C. Serre, F. Millange, S. Surblé, G. Férey, Angew. Chem., Int. Ed., 2004, 43, 6286.CrossRefGoogle Scholar
  6. 6.
    K. Nakata, H. Miyasaka, K. Sugimoto, T. Ishii, K. Sugiura, M. Yamashita, Chem. Lett., 2002, 658.Google Scholar
  7. 7.
    S. Wang, H.-L. Tsai, K. Folting, J. D. Martin, D. N. Hendrickson, G. Christou, J. Chem. Soc., Chem. Commun., 1994, 671.Google Scholar
  8. 8.
    D. Visinescu, G. I. Pascu, M. Andruh, J. Magull, H. W. Roesky, Inorg. Chim. Acta, 2002, 340, 201.CrossRefGoogle Scholar
  9. 9.
    H. Chen, W.-G. Wang, C.-B. Ma, C.-N. Chen, Q.-T. Liu, D.-Z. Liao, L.-C. Li, Jiegou Huaxue (Chinese J. Struct. Chem.), 2007, 26, 687.Google Scholar
  10. 10.
    J. Lu, C. Yu, T. Niu, T. Paliwala, G. Crisci, F. Somosa, A. J. Jacobson, Inorg. Chem., 1998, 37, 4637.CrossRefGoogle Scholar
  11. 11.
    Y.-L. Fu, Z.-W. Xu, J.-L. Ren, S. W. Ng, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2005, 61, m1897.CrossRefGoogle Scholar
  12. 12.
    S. Nikolaou, H. E. Toma, Eur. J. Inorg. Chem., 2008, 2266.Google Scholar
  13. 13.
    N. V. Izarova, M. N. Sokolov, A. Rothenberger, L. Ponikiewski, D. Fenske, V. P. Fedin, C. R. Chim., 2005, 8, 1005.CrossRefGoogle Scholar
  14. 14.
    W. Ouellette, B. S. Hudson, J. Zubieta, Inorg. Chem., 2007, 46, 4887.CrossRefGoogle Scholar
  15. 15.
    M. Eddaoudi, D. B. Moler, H. Li, B. Chen, T. M. Reineke, M. O’Keeffe, O. M. Yaghi, Acc. Chem. Res., 2001, 34, 319.CrossRefGoogle Scholar
  16. 16.
    H. R. Moon, N. Kobayashi, M. P. Suh, Inorg. Chem., 2006, 45, 8672.CrossRefGoogle Scholar
  17. 17.
    X. Zhao, B. Xiao, A. J. Fletcher, K. M. Thomas, D. Bradshaw, M. J. Rosseinsky, Science, 2004, 306, 1012.CrossRefGoogle Scholar
  18. 18.
    S. V. Kolotilov, V. V. Pavlishchuk, Teor. Eksp. Khim., 2009, 45, 67 [Theor. Exp. Chem. (Engl. Transl.), 2009, 45, 75].Google Scholar
  19. 19.
    M. A. Kiskin, I. G. Fomina, G. G. Aleksandrov, A. A. Sidorov, V. M. Novotortsev, Y. V. Rakitin, Z. V. Dobrokhotova, V. N. Ikorskii, Y. G. Shvedenkov, I. L. Eremenko, I. I. Moiseev, Inorg. Chem. Commun., 2005, 8, 89.CrossRefGoogle Scholar
  20. 20.
    K. S. Gavrilenko, S. V. Punin, O. Cador, S. Golhen, L. Ouahab, V. V. Pavlishchuk, Inorg. Chem., 2005, 44, 5903.CrossRefGoogle Scholar
  21. 21.
    A. B. Blake, A. Yavari, W. E. Hatfield, C. N. Sethulekshmi, J. Chem. Soc., Dalton Trans., 1985, 2509.Google Scholar
  22. 22.
    SMART (Control) and SAINT (Integration) Software, Version 5.0, Bruker AXS, Inc., Madison (WI), 1997.Google Scholar
  23. 23.
    G. M. Sheldrick, SHELXS-97 and SHELXL-97, University of Göttingen, Germany, 1997.Google Scholar

Copyright information

© Springer Science+Business Media, Inc.  2010

Authors and Affiliations

  • R. A. Polunin
    • 1
  • S. V. Kolotilov
    • 1
    Email author
  • M. A. Kiskin
    • 2
  • K. S. Gavrilenko
    • 1
  • L. Ouahab
    • 3
  • I. L. Eremenko
    • 2
  • V. M. Novotortsev
    • 2
  • V. V. Pavlishchuk
    • 1
  1. 1.L. V. Pisarzhevskii Institute of Physical ChemistryNational Academy of Sciences of the UkraineKievUkraine
  2. 2.N. S. Kurnakov Institute of General and Inorganic ChemistryRussian Academy of SciencesMoscowRussian Federation
  3. 3.Equipe Organométalliques et Matériaux MoléculairesSciences Chimiques de Rennes, UMR 6226 UR1-CNRSRennes cedexFrance

Personalised recommendations