Advertisement

Russian Chemical Bulletin

, Volume 59, Issue 5, pp 941–953 | Cite as

Spectroscopic properties, structure, and photoinduced motion of 4-(2-naphthyl)pyridine in cyclodextrin cavities

  • V. B. Nazarov
  • V. G. Avakyan
  • S. P. Gromov
  • A. I. Vedernikov
  • M. V. Fomina
  • T. G. Vershinnikova
  • V. Yu. Gak
  • N. A. Lobova
  • V. Yu. Rudyak
  • M. V. Alfimov
Full Articles

Abstract

Spontaneous and photoinduced protonation of 4-(2-naphthyl)pyridine (1) in solutions and in complexes with β-cyclodextrin (β-CD) and 2-hydroxypropyl-β-cyclodextrin (HP-β-CD) was studied using the absorption and fluorescence spectroscopies. The structures and stabilities of complexes of compound 1 and its quaternized derivative, 1-methyl-4-(2-naphthyl)pyridinium perchlorate (3), with β-CD and HP-β-CD were examined by 1H NMR titration (logK = 1.5–2.3). The molecule of naphthylpyridine 1 is always in the cyclodextrin cavity, regardless of the pH value of the solution. 2-Hydroxypropyl-β-cyclodextrin binds better the neutral form of compound 1 than does β-CD, while naphthylpyridinium salts exhibit nearly equal affinities to both cavitands. According to spectroscopic data, pK a (1) is 5.12 in water, which favors protonation of the N atom both in the ground and excited states; as a result, the fluorescence spectrum exhibits only the band of the protonated form with a lifetime of 15 ns. The addition of HP-β-CD to a solution of naphthylpyridine 1 results in the formation of inclusion complex 1@HP-β-CD, lowers pK a to 4.62, and gives rise to a fluorescence band of the nonprotonated form of compound 1 with a lifetime of 1.25 ns. Therefore, the presence of compound 1 in the HP-β-CD cavity precludes its protonation in the excited state. The initial portions of the fluorescence curves for compound 1 in solution and in its complex with HP-β-CD obtained upon pulsed excitation were compared to propose the initiation mechanism of short-lived fluorescence of the nonprotonated form of naphthylpyridine 1. Quantum chemical modeling of the protonation and complexation of compound 1 in the presence of water was performed. Based on the results obtained, a reversible photoinduced mechanical motion of naphthylpyridine 1 in the HP-β-CD cavity was suggested.

Key words

naphthylpyridine β-cyclodextrin hydroxypropyl-β-cyclodextrin inclusion complexes stability constants electronic absorption spectroscopy fluorescence quantum chemical modeling NMR spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Casadesus, M. Moreno, J. M. Luch, Chem. Phys. Lett., 2002, 356, 423.CrossRefGoogle Scholar
  2. 2.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, M. V. Fomina, T. G. Vershinnikova, M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 2004, 2420 [Russ. Chem. Bull., Int. Ed., 2004, 53, 2525].Google Scholar
  3. 3.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, M. V. Fomina, T. G. Vershinnikova, V. Yu. Rudyak, M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 2007, 272 [Russ. Chem. Bull., Int. Ed., 2007, 56, 281].Google Scholar
  4. 4.
    S. P. Gromov, M. V. Fomina, Izv. Akad. Nauk, Ser. Khim., 2004, 864 [Russ. Chem. Bull., Int. Ed., 2004, 53, 901].Google Scholar
  5. 5.
    C. Frassineti, S. Ghelli, P. Gans, A. Sabatini, M. S. Moruzzi, A. Vacca, Anal. Biochem., 1995, 231, 374.CrossRefGoogle Scholar
  6. 6.
    C. A. Parker, Photoluminescence of Solutions. With Applications to Photochemistry and Analytical Chemistry, Elsevier, Amsterdam—London—New York, 1968.Google Scholar
  7. 7.
    J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209.CrossRefGoogle Scholar
  8. 8.
    D. N. Laikov, Yu. A. Ustynyuk, Izv. Akad. Nauk, Ser. Khim., 2005, 804 [Russ. Chem. Bull., Int. Ed., 2005, 54, 820].Google Scholar
  9. 9.
    C. W. Yong, C. Washington, W. Smith, Pharm. Res., 2008, 25, 1092.CrossRefGoogle Scholar
  10. 10.
    H.-J. Schneider, F. Hacket, V. Rüdiger, H. Ikeda, Chem. Rev., 1998, 98, 1755.CrossRefGoogle Scholar
  11. 11.
    M. C. Sicilia, A. Nino, C. Munoz-Caro, J. Phys. Chem. A, 2005, 109, 8341.CrossRefGoogle Scholar
  12. 12.
    M. S. Henry, M. Z. Hoffman, J. Am. Chem. Soc., 1977, 99, 5201.CrossRefGoogle Scholar
  13. 13.
    V. B. Nazarov, V. G. Avakyan, M. V. Alfimov, Ross. Nanotekhnol. [Nanotechnologies in Russia], 2007, 2, 68 (in Russian).Google Scholar
  14. 14.
    B. Kallies, R. Mitzner, J. Mol. Model., 1995, 1, 68.CrossRefGoogle Scholar
  15. 15.
    E. P. Hunter, S. G. Lias, J. Phys. Chem. Ref. Data, 1998, 27, 413.CrossRefGoogle Scholar
  16. 16.
    T. Steiner, G. Koellner, J. Am. Chem. Soc., 1994, 116, 5122.CrossRefGoogle Scholar
  17. 17.
    R. G. Winkler, S. Fioravanti, G. Ciccotti, C. Margheritis, M. Villa, J. Comput.-Aided Mol. Des., 2000, 14, 659.CrossRefGoogle Scholar
  18. 18.
    L. Lawtrakul, H. Viernstein, P. Wolschann, Int. J. Pharm., 2003, 256, 33.CrossRefGoogle Scholar
  19. 19.
    D. Marx, Chem. Phys. Chem., 2006, 7, 1848.Google Scholar
  20. 20.
    E. M. Arnett, B. Chawa, L. Bell, M. Tagepera, W. Henre, R. W. Taft, J. Am. Chem. Soc., 1977, 99, 5729.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2010

Authors and Affiliations

  • V. B. Nazarov
    • 1
  • V. G. Avakyan
    • 2
  • S. P. Gromov
    • 2
  • A. I. Vedernikov
    • 2
  • M. V. Fomina
    • 2
  • T. G. Vershinnikova
    • 1
  • V. Yu. Gak
    • 1
  • N. A. Lobova
    • 2
  • V. Yu. Rudyak
    • 2
  • M. V. Alfimov
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.Photochemistry CenterRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations