Advertisement

Russian Chemical Bulletin

, 57:2045 | Cite as

Recoordination of a metal ion in the cavity of a crown compound: a theoretical study

3. Absorption spectra and excited states of azacrown-containing styryl dyes and their complexes
  • A. Ya. Freidzon
  • A. A. Bagatur’yants
  • S. P. Gromov
  • M. V. Alfimov
Full Articles

Abstract

The absorption spectra of styrylbenzothiazolium dye derivatives were calculated by the time-dependent density functional (TD DFT) method. The dyes of interest were (p-dimethylamino)styrylbenzothiazolium dye and its protonated form as well as aza-15(18)-crown-5(6)-containing dyes and their complexes with alkali (K+ and Na+) and alkaline-earth (Ca2+, Sr2+, and Ba2+) cations. Several low-lying conformers of the azacrown-containing dyes were considered. The electronic and geometric structures of the excited states responsible for the appearance of the long-wave (π-π*) absorption bands are studied. Complexation causes a hypsochromic shift of the long-wave absorption band correlating with the pyramidality of the crown ether nitrogen in the complex. The interaction of the cation with 3–4 solvent molecules or a counterion (ClO4 ) considerably reduces this shift, especially in the conformers without the metal-nitrogen bond. In some cases, the long-wave absorption band is close to the absorption band of the free dye. Similar results were obtained using the polarizable continuum model of solvation. Excited-state structures of the free model dye and the free azacrown-containing dyes exhibit a tendency to bond alternation. Conversely, the cationic complexes of the crown-containing dyes and the protonated model dye exhibit a tendency to bond equalization in the excited state. The changes in the excited-state geometries of the free dyes and their complexes account for the complexation-induced fluorescence enhancement observed in the experiments.

Key words

azacrown-containing dyes complexes with cations excited state photoinduced recoordination electronic absorption spectra quantum chemical calculations time-dependent density functional theory ab initio quantum chemical calculations configuration interaction 

References

  1. 1.
    A. O. Doroshenko, A. V. Grigorovich, E. A. Posokhov, V. G. Pivovarenko, A. P. Demchenko, A. D. Sheiko, Izv. Akad. Nauk, Ser. Khim., 2001, 386 [Russ. Chem. Bull., Int. Ed., 2001, 50, 404].Google Scholar
  2. 2.
    E. N. Ushakov, S. P. Gromov, O. A. Fedorova, M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 1997, 484 [Russ. Chem. Bull., 1997, 46, 463 (Engl. Transl.)].Google Scholar
  3. 3.
    S. P. Gromov, M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 1997, 641 [Russ. Chem. Bull., 1997, 47, 611 (Engl. Transl.)].Google Scholar
  4. 4.
    S. I. Druzhinin, M. V. Rusalov, B. M. Uzhinov, S. P. Gromov, S. A. Sergeev, M. V. Alfimov, J. Fluoresc., 1999, 9, 33.CrossRefGoogle Scholar
  5. 5.
    S. I. Druzhinin, S. P. Gromov, M. V. Alfimov, K. A. Zachariasse, XX Int. Conf. on Photochemistry (Moscow, July 30–August 4, 2001), Moscow, 2001, P. 299.Google Scholar
  6. 6.
    I. K. Lednev, R. E. Hester, J. N. Moore, J. Chem. Soc., Faraday Trans. 2, 1997, 93, 1551.CrossRefGoogle Scholar
  7. 7.
    M. Mitewa, N. Mateeva, L. Antonov, T. Deligeorgiev, Dyes Pigm., 1995, 27, 219.CrossRefGoogle Scholar
  8. 8.
    L. Antonov, N. Mateeva, M. Mitewa, St. Stoyanov, Dyes Pigm., 1996, 30, 235.CrossRefGoogle Scholar
  9. 9.
    K. Rurack, J. L. Bricks, G. Reck, R. Radeglia, U. Resch-Genger, J. Phys. Chem. A, 2000, 104, 3087.CrossRefGoogle Scholar
  10. 10.
    I. R. Nasimova, E. N. Ushakov, E. E. Makhaeva, O. A. Fedorova, S. P. Gromov, M. V. Alfimov, A. R. Khokhlov, Vysokomol. Soedinen., Ser. A, 2002, 44, 2171 [Polym. Sci., Ser. A, 2002, 44 (Engl. Transl.)].Google Scholar
  11. 11.
    M. M. Martin, P. Plaza, Y. H. Meyer, F. Badaoui, J. Bourson, J. P. Lefevre, B. Valeur, J. Phys. Chem., 1996, 100, 6879.CrossRefGoogle Scholar
  12. 12.
    J. D. Lewis, J. N. Moore, Chem. Commun., 2003, 2858.Google Scholar
  13. 13.
    P. Dumon, G. Jonusauskas, F. Dupuy, Ph. Pee, C. Rulliere, J.-F. Letard, R. Lapouyade, J. Phys. Chem., 1994, 98, 10391.CrossRefGoogle Scholar
  14. 14.
    R. Mathevet, G. Jonusauskas, C. Rulliere, J.-F. Letard, R. Lapouyade, J. Phys. Chem., 1995, 99, 15709.CrossRefGoogle Scholar
  15. 15.
    A. Ya. Freidzon, A. A. Bagatur’yants, S. P. Gromov, M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 2003, 2505 [Russ. Chem. Bull., Int. Ed., 2003, 52, 2646].Google Scholar
  16. 16.
    A. Ya. Freidzon, A. A. Bagatur’yants, S. P. Gromov, M. V. Alfimov, Izv. Akad. Nauk, Ser. Khim., 2005, 1981 [Russ. Chem. Bull., Int. Ed., 2005, 54, 2042].Google Scholar
  17. 17.
    I. K. Lednev, T.-Q. Ye, R. E. Hester, J. N. Moore, J. Phys. Chem. A, 1997, 101, 4966.CrossRefGoogle Scholar
  18. 18.
    I. K. Lednev, R. E. Hester, J. N. Moore, J. Am. Chem. Soc., 1997, 119, 3456.CrossRefGoogle Scholar
  19. 19.
    K. J. Thomas, K. G. Thomas, T. K. Manojkumar, S. Das, M. V. George, Proc. Ind. Acad. Sci. (Chem. Sci.), 1994, 106, 1375.Google Scholar
  20. 20.
    I. I. Baskin, K. Ya. Burshtein, A. A. Bagatur’yants, S. P. Gromov, M. V. Alfimov, Dokl. Akad. Nauk, 1992, 325, 306 [Dokl. Chem., 1992 (Engl. Transl.)].Google Scholar
  21. 21.
    I. I. Baskin, K. Ya. Burshtein, A. A. Bagatur’yants, S. P. Gromov, M. V. Alfimov, Zh. Strukt. Khim., 1993, 33, 39 [Russ. J. Struct. Chem., 1993 (Engl. Transl.)].Google Scholar
  22. 22.
    K. Rurack, M. Sczepan, M. Spieles, U. Resch-Genger, W. Rettig, Chem. Phys. Lett., 2000, 320, 87.CrossRefGoogle Scholar
  23. 23.
    B. Garcia-Acosta, R. Martinez-Manez, F. Sancenon, J. Soto, K. Rurack, M. Spieles, E. Garcia-Breijo, L. Gil, Inorg. Chem., 2007, 46, 3123.CrossRefGoogle Scholar
  24. 24.
    N. Mateeva, V. Enchev, L. Antonov, T. Deligeorgiev, M. Mitewa, J. Incl. Phenom., 1995, 20, 323.Google Scholar
  25. 25.
    J. P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  26. 26.
    D. N. Laikov, Chem. Phys. Lett., 1997, 281, 151.CrossRefGoogle Scholar
  27. 27.
    M. Dolg, H. Stoll, H. Preuss, R. M. Pitzer, J. Phys. Chem., 1993, 97, 5852.CrossRefGoogle Scholar
  28. 28.
    A. Dreuw, M. Head-Gordon, Chem. Rev., 2005, 105, 4009.CrossRefGoogle Scholar
  29. 29.
    J. Fabian, L. A. Diaz, G. Seifert, T. Niehaus, J. Mol. Struct. (THEOCHEM), 2002, 594, 41.CrossRefGoogle Scholar
  30. 30.
    L. Y. Wang, Q. W. Chen, G. H. Zhai, Z. Y. Wen, Z. X. Zhang, J. Mol. Struct. (THEOCHEM), 2006, 778, 15.CrossRefGoogle Scholar
  31. 31.
    B. Champagne, M. Guillaume, F. Zutterman, Chem. Phys. Lett., 2006, 425, 105.CrossRefGoogle Scholar
  32. 32.
    M. Guillaume, B. Champagne, F. Zutterman, J. Phys. Chem. A, 2006, 110, 13007.CrossRefGoogle Scholar
  33. 33.
    M. Poprawa-Smoluch, J. Baggerman, H. Zhang, H. P. A. Maas, L. De Cola, A. M. Brouwer, J. Phys. Chem. A, 2006, 110, 11926.CrossRefGoogle Scholar
  34. 34.
    D. Jacquemin, V. Wathelet, E. A. Perpete, J. Phys. Chem. A, 2006, 110, 9145.CrossRefGoogle Scholar
  35. 35.
    J. Preat, D. Jacquemin, V. Wathelet, J.-M. Andre, E. A. Perpete, J. Phys. Chem. A, 2006, 110, 8144.CrossRefGoogle Scholar
  36. 36.
    E. A. Perpete, J. Preat, J.-M. Andre, D. Jacquemin, J. Phys. Chem. A, 2006, 110, 5629.CrossRefGoogle Scholar
  37. 37.
    C. Adamo, V. Barone, J. Chem. Phys., 1999, 110, 6158.CrossRefGoogle Scholar
  38. 38.
    A. V. Nemukhin, B. L. Grigorenko, A. A. Granovskii, Vestn. MGU. Ser. 2. Khimiya, 2004, 45, 75 [Vestn. Mosc. Univ., Ser. Khim., 2004, 45 (Engl. Transl.)].Google Scholar
  39. 39.
    A. Broo, A. Holmen, J. Phys. Chem. A, 1997, 101, 3589.CrossRefGoogle Scholar
  40. 40.
    S. J. O. Hardman, K. C. Thompson, Biochemistry, 2006, 45, 9145.CrossRefGoogle Scholar
  41. 41.
    M. K. Shukla, S. K. Mishra, A. Kumar, P. C. Mishra, J. Comput. Chem., 2000, 21, 826.CrossRefGoogle Scholar
  42. 42.
    J. Tomasi, M. Persico, Chem. Rev., 1994, 94, 2027.CrossRefGoogle Scholar
  43. 43.
    R. Cammi, J. Tomasi, J. Comput. Chem., 1995, 16, 1449.CrossRefGoogle Scholar
  44. 44.
    B. Mennucci, A. Toniolo, J. Tomasi, J. Am. Chem. Soc., 2000, 122, 10621.CrossRefGoogle Scholar
  45. 45.
    K. Fukui, Acc. Chem. Res., 1981, 14, 363.CrossRefGoogle Scholar
  46. 46.
    I. Tavernelli, U. F. Rohrig, U. Rothlisberger, Mol. Phys., 2005, 103, 963.CrossRefGoogle Scholar
  47. 47.
    B. G. Levine, Chaehyuk Ko, J. Quenneville, T. J. Martinez, Mol. Phys., 2006, 104, 1039.CrossRefGoogle Scholar
  48. 48.
    A. Ya. Freidzon, K. G. Vladimirova, A. A. Bagatur’yants, S. P. Gromov, M. V. Alfimov, J. Mol. Struct. (THEOCHEM), 2007, 809, 61.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2008

Authors and Affiliations

  • A. Ya. Freidzon
    • 1
  • A. A. Bagatur’yants
    • 1
  • S. P. Gromov
    • 1
  • M. V. Alfimov
    • 1
  1. 1.Center of PhotochemistryRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations