Russian Chemical Bulletin

, Volume 57, Issue 5, pp 1033–1041

Creation of biocatalysts with prescribed properties

  • V. I. Tishkov
  • S. S. Savin
  • S. V. Khoronenkova
Review

Abstract

Oxidoreductases are widely used in different branches of industry (particularly, in pharmaceutical) and analytical biotechnology. To optimize the use and to reduce production cost of a target product, the properties of a biocatalyst should be modified to meet requirements of a specific process or method of analysis. Problem of creation of biocatalysts with prescribed properties includes complex set of R&D such as an engineering of enzyme properties, construction of recombinant strains overproducing the target protein, development of a large-scale downstream process and preparation of a working form of a biocatalysts. In the present work, the basic features and practical examples of such an over-all approach are considered for formate dehydrogenase and D-amino acid oxidase.

Key words

oxidoreductases formate dehydrogenase d-amino acid oxidase genetic and protein engineering recombinant strains chiral synthesis coenzymes recovery 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. Ferrer, O. V. Golyshina, A. Beloqui, P. N. Golyshin, Curr. Opin. Microbiol., 2007, 10, 207.CrossRefGoogle Scholar
  2. 2.
    M. Ferrer, O. V. Golyshina, A. Beloqui, P. N. Golyshin, K. N. Timmis, Nature, 2007, 445, 91.CrossRefGoogle Scholar
  3. 3.
    O. V. Golyshina, P. N. Golyshin, K. N. Timmis, M. Ferrer, Environ. Microbiol., 2006, 8, 416.CrossRefGoogle Scholar
  4. 4.
    M. M. Yakimov, L. Giuliano, E. Crisafi, T. N. Chernikova, K. N. Timmis, P. N. Golyshin, Environ. Microbiol., 2002, 4, 249.CrossRefGoogle Scholar
  5. 5.
    D. Daffonchio, S. Borin, T. Brusa, L. Brusetti, P. W. van der Wielen, H. Bolhuis, M. M. Yakimov, G. D’Auria, L. Giuliano, D. Marty, C. Tamburini, T. J. McGenity, J. E. Hallsworth, A. M. Sass, K. N. Timmis, A. Tselepides, G. J. de Lange, A. Hübner, J. Thomson, S. P. Varnavas, F. Gasparoni, H. W. Gerber, E. Malinverno, C. Corselli, J. Garcin, B. McKew, P. N. Golyshin, N. Lampadariou, P. Polymenakou, D. Calore, S. Cenedese, F. Zanon, S. Hoog, Nature, 2006, 440, 203.CrossRefGoogle Scholar
  6. 6.
    M. M. Yakimov, V. La Cono, R. Denaro, G. D’Auria, F. Decembrini, K. N. Timmis, P. N. Golyshin, L. Giuliano, ISME J., 2007, 1, 743.CrossRefGoogle Scholar
  7. 7.
    H. S. Kim, K. N. Timmis, P. N. Golyshin, Appl. Microbiol. Biotechnol., 2007, 75, 1275.CrossRefGoogle Scholar
  8. 8.
    M. Ferrer, O. V. Golyshina, T. N. Chernikova, A. N. Khachane, D. Reyes-Duarte, V. A. Santos, C. Strompl, K. Elborough, G. Jarvis, A. Neef, M. M. Yakimov, K. N. Timmis, P. N. Golyshin, Environ. Microbiol., 2005, 7, 1996.CrossRefGoogle Scholar
  9. 9.
    F. H. Arnold, J. C. Moore, Adv. Biochem. Eng. Biotechnol., 1997, 58, 1.Google Scholar
  10. 10.
    O. Kuchner, F. H. Arnold, Trends Biotechnol., 1997, 15, 523.CrossRefGoogle Scholar
  11. 11.
    J. C. Moore, H. M. Jin, O. Kuchner, F. H Arnold, J. Mol. Biol., 1997, 272, 336.CrossRefGoogle Scholar
  12. 12.
    D. Baker, A. Sali, Science, 2001, 295, 93.CrossRefGoogle Scholar
  13. 13.
    E. Katchalski-Katzir, D. M. Kraemer, J. Mol. Catal. B: Enzym., 2000, 10, 157.CrossRefGoogle Scholar
  14. 14.
    C. Mateo, O. Abian, G. Fernandez-Lorente, J. Pedroche, R. Fernandez-Lafuente, J. M. Guisan, A. Tam, M. Daminati, Biotechnol. Prog., 2002, 18, 629.CrossRefGoogle Scholar
  15. 15.
    E. G. Weinhold, A. Glasfeld, A. D. Ellington, S. A. Benner, Proc. Natl. Acad. Sci. USA, 1991, 88, 8420.CrossRefGoogle Scholar
  16. 16.
    R. Wichmann, D. Vasic-Racki, Adv. Biochem. Eng. Biotechnol., 2005, 92, 225.Google Scholar
  17. 17.
    A. S. Bommarius, M. Schwarm, K. Stingl, M. Kottenhahn, K. Huthmacher, K. Drauz, Tetrahedron: Asymmetry, 1995, 6, 2851.CrossRefGoogle Scholar
  18. 18.
    V. I. Tishkov, V. O. Popov, Biomol. Eng., 2006, 23, 89.CrossRefGoogle Scholar
  19. 19.
    A. E. Serov, A. S. Popova, V. V. Fedorchuk, V. I. Tishkov, Biochem. J., 2002, 367, 841.CrossRefGoogle Scholar
  20. 20.
    V. I. Tishkov, A. G. Galkin, G. N. Marchenko, Y. D. Tsygankov, A. M. Egorov, Biotechnol. Appl. Biochem., 1993, 18, 201.Google Scholar
  21. 21.
    V. I. Tishkov, A. G. Galkin, V. N. Gladyshev, V. V. Kapzanov, A. M. Egopov, Biotekhnologiya, 1992, 5, 52 [Biotechnology (Russia), 1992, 5 (Engl. Transl.)].Google Scholar
  22. 22.
    V. I. Tishkov, A. G. Galkin, V. V. Fedorchuk, P. A. Savitsky, A. M. Rojkova, H. Gieren, M.-R. Kula, Biotechnol. Bioeng., 1999, 64, 187.CrossRefGoogle Scholar
  23. 23.
    V. S. Lamzin, Z. Dauter, V. O. Popov, E. H. Harutyunyan, K. S. Wilson, J. Mol. Biol., 1994, 236, 759.CrossRefGoogle Scholar
  24. 24.
    A. E. Serov, E. R. Odintseva, I. V. Uporov, V. I. Tishkov, Biokhim., 2005, 70, 974 [Biochemistry (Moscow), 2005, 70, 804 (Engl. Transl.)].Google Scholar
  25. 25.
    A. M. Rojkova, A. G. Galkin, L. B. Kulakova, A. E. Serov, P. A. Savitsky, V. V. Fedorchuk, V. I. Tishkov, FEBS Lett., 1999, 445, 183.CrossRefGoogle Scholar
  26. 26.
    E. G. Sadykhov, A. E. Serov, N. S. Voinova, S. V. Uglanova, A. S. Petrov, A. A. Alexeeva, S. Yu. Kleimenov, V. O. Popov, V. I. Tishkov, Appl. Biochem. Microbiol., 2006, 42, 236.CrossRefGoogle Scholar
  27. 27.
    U. Schwarz-Linek, A. Krödel, F.-A. Ludwig, A. Schulze, S. Rissom, U. Kragl, V. I. Tishkov, M. Vogel, Synthesis, 2001, 33, 947.CrossRefGoogle Scholar
  28. 28.
    S. C. Maurer, H. Schulze, R. D. Schmid, V. Urlacher, Adv. Synth. Catal., 2003, 345, 802.CrossRefGoogle Scholar
  29. 29.
    V. I. Tishkov, V. O. Popov, Biokhim., 2004, 69, 1537 [Biochemistry (Moscow), 2004, 69, 1252 (Engl. Transl.)].Google Scholar
  30. 30.
    L. Pollegioni, L. Piubelli, S. Sacchi, M. S. Pilone, G. Molla, Cell. Mol. Life Sci., 2007, 64, 1373.CrossRefGoogle Scholar
  31. 31.
    V. I. Tishkov, S. V. Khoronenkova, Biokhim., 2005, 70, 51 [Biochemistry (Moscow), 2005, 70, 40 (Engl. Transl.)].Google Scholar
  32. 32.
    G. H. Fisher, A. D’Aniello, A. Vetere, L. Padula, G. P. Cusano, E. H. Man, Brain Res. Bull., 1991, 26, 983.CrossRefGoogle Scholar
  33. 33.
    H. D. Conlon, J. Baqai, K. Baker, Y. Q. Shen, B. L. Wong, R. Noiles, C. W. Rausch, Biotechnol. Bioeng., 1995, 46, 510.CrossRefGoogle Scholar
  34. 34.
    Y. Inaba, K. Mizukami, N. Hamada-Sato, T. Kobayashi, C. Imada, E. Watanabe, Biosens. Bioelectron., 2003, 19, 423.CrossRefGoogle Scholar
  35. 35.
    N. Nakajima, D. Conrad, H. Sumi, K. Suzuki, N. Esaki, C. Wandrey, K. Soda, J. Ferm. Bioeng., 1990, 70, 322.CrossRefGoogle Scholar
  36. 36.
    T. M. Beard, N. J. Turner, Chem. Commun. (Camb.), 2002, 3, 246.CrossRefGoogle Scholar
  37. 37.
    L. Pollegioni, G. Molla, S. Sacchi, E. Rosini, R. Verga, M. S. Pilone, Appl. Microbiol. Biotechnol., 2008, 78, 1.CrossRefGoogle Scholar
  38. 38.
    E. E. Davydova, V. I. Tishkov, Vestn. MGU, Ser. 2. Khim., 2002, 43, 353 [Vestn. Mosk. Univ., Ser. Khim., 2002, 43 (Engl. Transl.)].Google Scholar
  39. 39.
    L. Pollegioni, K. Fukui, V. Massey, J. Biol. Chem., 1994, 269, 31666.Google Scholar
  40. 40.
    M. P. Simonetta, R. Verga, A. Fretta, G. M. Hanozet, J. Gen. Microbiol., 1989, 135, 593.Google Scholar
  41. 41.
    G. Molla, C. Vegezzi, M. S. Pilone, L. Pollegioni, Protein Expr. Purif., 1998, 14, 289.CrossRefGoogle Scholar
  42. 42.
    R. Hörner, F. Wagner, L. Fischer, Appl. Environ. Microbiol., 1996, 62, 2106.Google Scholar
  43. 43.
    F. J. Gonzalez, J. Montes, F. Martin, M. C. Lopez, E. Ferminan, J. Catalan, M. A. Galan, A. Dominguez, Yeast, 1997, 13, 1399.CrossRefGoogle Scholar
  44. 44.
    J. Yu, D.-Y. Li, Y.-J. Zhang, S. Yang, R. Li, Z.-Y. Yuan, J. Mol. Catal. B: Enzym., 2002, 18, 291.CrossRefGoogle Scholar
  45. 45.
    I. Dib, D. Stanzer, B. Nidetzky, Appl. Environ. Microbiol., 2007, 73, 331.CrossRefGoogle Scholar
  46. 46.
    B. Geueke, A. Weckbecker, W. Hummel, Appl. Microbiol. Biotechnol., 2007, 74, 1240.CrossRefGoogle Scholar
  47. 47.
    T. Schrader, J. R. Andreesen, Arch. Microbiol., 1996, 165, 41.CrossRefGoogle Scholar
  48. 48.
    L. Pollegioni, S. Butò, W. Tischer, S. Ghisla, M. S. Pilone, Biochem. Mol. Biol. Int., 1993, 31, 709.Google Scholar
  49. 49.
    S. S. Savin, I. V. Chernyshev, V. I. Tishkov, S. V. Khoronenkova, Vestn. MGU. Ser. 2. Khim., 2006, 47, 25 [Vestn. Mosk. Univ., Ser. Khim., 2006, 47 (Engl. Transl.)].Google Scholar
  50. 50.
    S. V. Khoronenkova, V. I. Tishkov, Anal. Biochem., 2008, 374, 405.CrossRefGoogle Scholar
  51. 51.
    I. Dib, A. Slavica, W. Riethorst, B. Nidetzky, Biotechnol. Bioeng., 2006, 94, 645.CrossRefGoogle Scholar
  52. 52.
    P. Pernot, J. P. Mothet, O. Schuvailo, A. Soldatkin, L. Pollegioni, M. Pilone, M. T. Adeline, R. Cespuglio, S. Marinesco, Anal. Chem., 2008, 80, 1589.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2008

Authors and Affiliations

  • V. I. Tishkov
    • 1
    • 2
  • S. S. Savin
    • 1
    • 2
  • S. V. Khoronenkova
    • 1
    • 3
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation
  2. 2.A. N. Bach Institute of BiochemistryRussian Academy of SciencesMoscowRussian Federation
  3. 3.Innovations and High Technologies MSU Ltd.MoscowRussian Federation

Personalised recommendations