Russian Chemical Bulletin

, Volume 57, Issue 4, pp 754–760 | Cite as

Molten state and solvent-free systems studied by NMR spectroscopy: addition reactions catalyzed by transition metal complexes

  • V. P. AnanikovEmail author
  • I. P. Beletskaya


In the present review we address scarcely studied application area of NMR spectroscopy — investigation of molten state and solvent-free systems. In such a case NMR spectra are recorded without a solvent and without magnetic field stabilization on any nucleus. Taking our recent studies of catalytic addition of sulfur- and selenium-containing compounds to alkynes as examples, we describe most important practical aspects of NMR studies and their application for solving important chemical problems.

Key words

NMR spectroscopy solvent-free reactions molten state reactions transition metal catalysis alkynes 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Green Chemistry: Theory and Practice, Eds P. T. Anastas, J. C. Warner, Oxford University Press, Oxford, 2000.Google Scholar
  2. 2.
    B. M. Trost, Science, 1991, 254, 1471.CrossRefGoogle Scholar
  3. 3.
    R. A. Sheldon, Chem. Ind., 1992, 903.Google Scholar
  4. 4.
    J. O. Metzger, Angew. Chem., Int. Ed. Engl., 1998, 37, 2975.CrossRefGoogle Scholar
  5. 5.
    K. Tanaka, F. Toda, Chem. Rev., 2000, 100, 1025.CrossRefGoogle Scholar
  6. 6.
    G. W. V. Cave, C. L. Raston, J. L. Scott, Chem. Commun., 2001, 2159.Google Scholar
  7. 7.
    P. J. Walsh, H. Li, C. A. de Parrodi, Chem. Rev., 2007, 107, 2503.CrossRefGoogle Scholar
  8. 8.
    H. R. Hobbs, N. R. Thomas, Chem. Rev., 2007, 107, 2786.CrossRefGoogle Scholar
  9. 9.
    A. Loupy, A. Petit, J. Hamelin, F. Texier-Boullet, P. Jacquault, D. Mathe, Synthesis, 1998, 1213.Google Scholar
  10. 10.
    R. S. Varma, Green Chem., 1999, 1, 43.CrossRefGoogle Scholar
  11. 11.
    R. S. Varma, Pure Appl. Chem., 2001, 73, 193.CrossRefGoogle Scholar
  12. 12.
    M. Larhed, C. Moberg, A. Hallberg, Acc. Chem. Res., 2002, 35, 717.CrossRefGoogle Scholar
  13. 13.
    J. Tsuji, Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis, J. Wiley and Sons, Chichester, 2000.Google Scholar
  14. 14.
    M. Beller, C. Bolm, Transition Metals for Organic Chemistry, Wiley-VCH, Weinheim, 1998.CrossRefGoogle Scholar
  15. 15.
    Handbook of Organopalladium Chemistry for Organic Synthesis, Ed. E. Negishi, J. Wiley and Sons, New York-Chichester, 2002, 1, 215.Google Scholar
  16. 16.
    I. P. Beletskaya, A. V. Cheprakov, Metal Complexes as Catalysts for C-C Cross-coupling Reactions, in Comprehensive Coordination Chemistry II, Eds J. A. McCleverty, T. J. Meyer, Elsevier, Oxford, 2004, 9, 305.Google Scholar
  17. 17.
    I. P. Beletskaya, C. Moberg, Chem. Rev., 2006, 106, 2320.CrossRefGoogle Scholar
  18. 18.
    F. Alonso, I. P. Beletskaya, M. Yus, Chem. Rev., 2004, 104, 3079.CrossRefGoogle Scholar
  19. 19.
    M. Beller, J. Seayad, A. Tillack, H. Jiao, Angew. Chem., Int. Ed., 2004, 43, 3368.CrossRefGoogle Scholar
  20. 20.
    I. P. Beletskaya, V. P. Ananikov, Eur. J. Org. Chem., 2007, 3431.Google Scholar
  21. 21.
    I. P. Beletskaya, V. P. Ananikov, Pure Appl. Chem., 2007, 79, 1041.CrossRefGoogle Scholar
  22. 22.
    V. P. Ananikov, K. A. Gayduk, I. P. Beletskaya, V. N. Khrustalev, M. Yu. Antipin, Chem. Eur. J., 2008, 14, 2420.CrossRefGoogle Scholar
  23. 23.
    V. P. Ananikov, N. V. Orlov, I. P. Beletskaya, Organometallics, 2006, 25, 1970.CrossRefGoogle Scholar
  24. 24.
    V. P. Ananikov, N. V. Orlov, I. P. Beletskaya, Organometallics, 2007, 26, 740.CrossRefGoogle Scholar
  25. 25.
    V. P. Ananikov, D. A. Malyshev, I. P. Beletskaya, G. G. Aleksandrov, I. L. Eremenko, Adv. Synth. Catal., 2005, 347, 1993.CrossRefGoogle Scholar
  26. 26.
    P. C. M. Van Zijl, S. Sukumar, M. O. Johnson, P. Webb, R. E. Hurd, J. Magn. Reson. A, 1994, 111, 203.CrossRefGoogle Scholar
  27. 27.
    M. Weiger, T. Speck, M. Fey, J. Magn. Reson., 2006, 182, 38.CrossRefGoogle Scholar
  28. 28.
    W. E. Hull, Spin Report, 2004, 154–155, 15.Google Scholar
  29. 29.
    G. Roth, Spin Report, 2005, 156, 33.Google Scholar
  30. 30.
    D. Moskau, Concepts Magn. Reson. (Magn. Reson. Eng.), 2002, 15, 164.CrossRefGoogle Scholar
  31. 31.
    V. P. Ananikov, N. V. Orlov, I. P. Beletskaya, V. N. Khrustalev, M. Yu. Antipin, T. V. Timofeeva, J. Am. Chem. Soc., 2007, 129, 7252.CrossRefGoogle Scholar
  32. 32.
    V. P. Ananikov, Novosti YaMR v Pis’makh, 2007, 1799 [Russian NMR Newsletters, 2007 (Engl. Transl.)].Google Scholar
  33. 33.
    P. Florian, D. Massiot, B. Poe, I. Farnan, J.-P. Coutures, Solid State NMR, 1995, 5, 233.CrossRefGoogle Scholar
  34. 34.
    D. Massiot, D. Trumeau, B. Touzo, I. Farnan, J.-C. Rifflet, A. Douy, J.-P. Coutures, J. Phys. Chem., 1995, 99, 16455.Google Scholar
  35. 35.
    P. Florian, N. Sadiki, D. Massiot, J.-P. Coutures, J. Phys. Chem. B, 2007, 111, 9747.CrossRefGoogle Scholar
  36. 36.
    W. Hu, H. Hagihara, T. Miyoshi, Macromolecules, 2007, 40, 3505.CrossRefGoogle Scholar
  37. 37.
    G. R. Hatfield, W. E. Killinger, R. C. Ziegler, Anal. Chem., 1995, 67, 3082.CrossRefGoogle Scholar
  38. 38.
    M. Pollard, K. Klimke, R. Graf, H. W. Spiess, M. Wilhelm, O. Sperber, C. Piel, W. Kaminsky, Macromolecules, 2004, 37, 813.CrossRefGoogle Scholar
  39. 39.
    K. Klimke, M. Parkinson, C. Piel, W. Kaminsky, H. W. Spiess, M. Wilhelm, Macromol. Chem. Phys., 2006, 207, 382.CrossRefGoogle Scholar
  40. 40.
    N. E. Moe, X. Qiu, M. D. Ediger, Macromolecules, 2000, 33, 2145.CrossRefGoogle Scholar
  41. 41.
    M.-H. Hung, Macromolecules, 1993, 26, 5829.CrossRefGoogle Scholar
  42. 42.
    F. J. Stadler, C. Piel, K. Klimke, J. Kaschta, M. Parkinson, M. Wilhelm, W. Kaminsky, H. Munstedt, Macromolecules, 2006, 39, 1474.CrossRefGoogle Scholar
  43. 43.
    V. P. Ananikov, N. V. Orlov, I. P. Beletskaya, Izv. Akad. Nauk, Ser. Khim., 2005, 569 [Russ. Chem. Bull., Int. Ed., 2005, 54, 576].Google Scholar
  44. 44.
    V. P. Ananikov, I. P. Beletskaya, Org. Biomol. Chem., 2004, 2, 284.CrossRefGoogle Scholar
  45. 45.
    V. P. Ananikov, I. P. Beletskaya, Izv. Akad. Nauk, Ser. Khim., 2004, 534 [Russ. Chem. Bull., Int. Ed., 2004, 53, 561].Google Scholar
  46. 46.
    R. Hiraoka, H. Watanabe, M. Senna, Tetrahedron Lett., 2006, 47, 3111.CrossRefGoogle Scholar
  47. 47.
    V. P. Ananikov, I. P. Beletskaya, Izv. Akad. Nauk, Ser. Khim., 2003, 771 [Russ. Chem. Bull., Int. Ed., 2003, 52, 811].Google Scholar
  48. 48.
    V. P. Ananikov, Spin Report, 2005, 156–157, 41.Google Scholar
  49. 49.
    H. Hagiwara, S. Ohtsubo, M. Kato, Tetrahedron, 1997, 53, 2415.CrossRefGoogle Scholar
  50. 50.
    H. Hagiwara, S. Ohtsubo, M. Kato, Mol. Cryst. Liq. Cryst., 1996, 279, 291.CrossRefGoogle Scholar
  51. 51.
    V. P. Ananikov, I. P. Beletskaya, G. G. Aleksandrov, I. L. Eremenko, Organometallics, 2003, 22, 1414.CrossRefGoogle Scholar
  52. 52.
    V. P. Ananikov, M. A. Kabeshov, I. P. Beletskaya, V. N. Khrustalev, M. Yu. Antipin, Organometallics, 2005, 24, 1275.CrossRefGoogle Scholar
  53. 53.
    V. P. Ananikov, M. A. Kabeshov, I. P. Beletskaya, G. G. Aleksandrov, I. L. Eremenko, J. Organomet. Chem., 2003, 687, 451.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, Inc.  2008

Authors and Affiliations

  1. 1.N. D. Zelinsky Institute of Organic ChemistryRussian Academy of SciencesMoscowRussian Federation
  2. 2.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations