Russian Chemical Bulletin

, Volume 57, Issue 2, pp 298–303 | Cite as

Modification of multiwalled carbon nanotubes by carboxy groups and determination of the degree of functionalization

  • M. N. Kirikova
  • A. S. Ivanov
  • S. V. SavilovEmail author
  • V. V. Lunin
Full Articles


Multiwalled carbon nanotubes were modified by carboxy groups. Four independent methods for the determination of the degree of functionalization of the surface were proposed: 13C NMR spectroscopy, thermogravimetry, titrimetry, and fluorimetry. The first two methods show the total content of carboxy groups in the sample, and the latter two methods give information about the content of the surface groups only.

Key words

nanocarbon materials multiwalled carbon nanotubes carboxylation degree of functionalization 13C NMR spectroscopy TGA titrimetry fluorescence spectroscopy 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Duclaux, Carbon, 2002, 40, 1751.CrossRefGoogle Scholar
  2. 2.
    J. E. Riggs, Z. Guo, D. L. Carroll, Y. P. Sun, J. Am. Chem. Soc., 2000, 122, 5879.CrossRefGoogle Scholar
  3. 3.
    A. Bianco, K. Kostarelos, C. D. Partidos, M. Prato, Chem. Commun., 2005, 571.Google Scholar
  4. 4.
    V. Georgakilas, N. Tagmatarchis, D. Pantarotto, A. Bianco, J.-P. Briand, M. Prato, Chem. Commun., 2002, 3050.Google Scholar
  5. 5.
    K. Esumi, M. Ishigami, A. Nakajima, K. Sawada, H. Honda, Carbon, 1996, 34, 279.CrossRefGoogle Scholar
  6. 6.
    S. V. Savilov, G. A. Zosimov, V. V. Lunin, Sposob polucheniya UNT s inkapsulirovannymi chastitsami nikelya i kobal’ta: ustanovka dlya sinteza materialov na osnove uglerodnykh nanotrubok i chastits nikelya i kobal’ta [Method for the Preparation of CNT with Encapsulated Nickel and Cobalt Particles: A Setup for the Synthesis of Materials Based on Carbon Nanotubes and Nickel and Cobalt Particles], Application for Patent of the Russian Federation 2 005 132 267 (in Russian).Google Scholar
  7. 7.
    I. D. Rosca, Carbon, 2005, 43, 3124.CrossRefGoogle Scholar
  8. 8.
    P. Liu, Eur. Polym. J., 2005, 41, 2693.CrossRefGoogle Scholar
  9. 9.
    H. P. Boehm, Adv. Catal., 1966, 16, 179.CrossRefGoogle Scholar
  10. 10.
    S. Friedman, M. Kaufman, Fuel, 1961, 41, 33.Google Scholar
  11. 11.
    S. P. Park, Y. C. Choi, K. S. Kim, D. Chung, D. J. Bae, K. H. An, S. C. Lim, X. Y. Zhu, Y. H. Lee, Carbon, 2001, 39, 655.CrossRefGoogle Scholar
  12. 12.
    B. P. Ramesh, W. J. Blau, P. K. Tyagi, D. S. Misra, N. Ali, J. Gracio, G. Cabral, E. Titus, Thin Solid Films, 2006, 494, 128.CrossRefGoogle Scholar
  13. 13.
    C. Goze Bac, P. Bernier, S. Latil, V. Jourdain, A. Rubio, S. H. Jhang, S. W. Lee, Y. W. Park, M. Holzinger, A. Hirsch, Curr. Appl. Phys., 2001, 1, 149.CrossRefGoogle Scholar
  14. 14.
    W. Fuchs, Brennstoff-Chemie, 1958, 39, 1.Google Scholar

Copyright information

© Springer Science+Business Media, Inc.  2008

Authors and Affiliations

  • M. N. Kirikova
    • 1
  • A. S. Ivanov
    • 1
  • S. V. Savilov
    • 1
    Email author
  • V. V. Lunin
    • 1
  1. 1.Department of ChemistryM. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations