Advertisement

Russian Chemical Bulletin

, Volume 56, Issue 2, pp 281–289 | Cite as

Pseudorotaxane complexes of naphthylpyridines and naphthylbipyridyl with β-cyclodextrin and hydroxypropyl-β-cyclodextrin

  • V. B. Nazarov
  • V. G. Avakyan
  • S. P. Gromov
  • M. V. Fomina
  • T. G. Vershinnikova
  • V. Yu. Rudyak
  • M. V. Alfimov
Article

Abstract

The electronic absorption spectra and fluorescence spectra of 4-(2-naphthyl)pyridine (1), 2-(4-methyl-2-pyridyl)-4-(2-naphthyl)pyridine (2), and 4-(2-naphthyl)-2-phenylpyridine (3) in solutions and in complexes with β-cyclodextrin (β-CD) and well water-soluble hydroxy-propyl-β-cyclodextrin (HP-β-CD) were studied. Fluorescence near 475 nm observed in aqueous solutions of compounds 1–3 arises from protonated forms of these compounds produced in the excited state. Results of DFT quantum chemical calculations show an increase in proton affinity energies of excited-state naphthylpyridines 2 and 3. The formation of inclusion complexes with cyclodextrins makes protonation of compounds 2 and 3 more difficult, which manifests in large hypsochromic shifts of fluorescence band maxima. The stability constants of the complexes 1·HP-β-CD and 2·HP-β-CD determined from their fluorescence spectra are 3425 and 3760 L mol−1, respectively. The stability constant of the complex 3·HP-β-CD (5500±600 L mol−1) was found from the changes in the solubility of naphthylpyridine 3 in water upon complexation. Semiempirical quantum chemical calculations of the molecular structures and thermodynamic characteristics of pseudorotaxane inclusion complexes of trans-2, cis-2, and trans-2·H2O with HP-β-CD were carried out.

Key words

naphthylpyridines naphthylbipyridyl β-cyclodextrin hydroxypropyl-β-cyclodextrin pseudorotaxane complexes molecular structure quantum chemical calculations density functional theory PM3 method electronic absorption spectra fluorescence spectra 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    V. Ramamurthy, Tetrahedron, 1986, 42, 5753.CrossRefGoogle Scholar
  2. 2.
    W. Śliwa and B. Dondela, Heterocycles, 2000, 53, 1595.CrossRefGoogle Scholar
  3. 3.
    S. A. Nepogodiev and J. F. Stoddart, Chem. Rev., 1998, 98, 1959.CrossRefGoogle Scholar
  4. 4.
    V. Balzani, Photochem. Photobiol. Sci., 2003, 2, 459.CrossRefGoogle Scholar
  5. 5.
    L. G. Kuz’mina, A. I. Vedernikov, N. A. Lobova, J. A. K. Howard, Y. A. Strelenko, V. P. Fedin, M. V. Alfimov, and S. P. Gromov, New J. Chem., 2006, 30, 458.CrossRefGoogle Scholar
  6. 6.
    V. B. Nazarov, V. G. Avakyan, S. P. Gromov, M. V. Fomina, T. G. Vershinnikova, and M. V. Alfimov, Izv. Akad. Nauk. Ser. Khim., 2004, 2421 [Russ. Chem. Bull., Int. Ed., 2004, 53, 2525].Google Scholar
  7. 7.
    S. P. Gromov and M. V. Fomina, Izv. Akad. Nauk. Ser. Khim., 2004, 864 [Russ. Chem. Bull., Int. Ed., 2004, 53, 901].Google Scholar
  8. 8.
    S. P. Gromov, M. V. Fomina, N. A. Kurchavov, and Yu. B. Grishina, Zh. Org. Khim., 2005, 41, 1712 [Russ. J. Org. Chem., 2005, 41, 1678 (Engl. Transl.)].Google Scholar
  9. 9.
    E. N. Ushakov, S. P. Gromov, O. A. Fedorova, Y. V. Pershina, M. V. Alfimov, F. Barigelletti, L. Flamigni, and V. Balzani, J. Phys. Chem. A, 1999, 103, 11188.Google Scholar
  10. 10.
    C. A. Parker, Photoluminescence of Solutions, with Applications to Photochemistry and Analytical Chemistry, Elsevier, Amsterdam—London—New York, 1968.Google Scholar
  11. 11.
    D. N. Laikov, J. Chem. Phys., 1997, 281, 151.Google Scholar
  12. 12.
    J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 1996, 77, 3865.CrossRefGoogle Scholar
  13. 13.
    D. N. Laikov, Ph.D. (phys., math.) Thesis, M. V. Lomonosov Moscow State University, Moscow, 2000 (in Russian).Google Scholar
  14. 14.
    M. W. Schmidt, K. K. Baldridge, J. A. Boatz, S. T. Elbert, M. S. Gordon, J. H. Jensen, N. Matsunaga, K. A. Nguen, S. Su, T. L. Windus, M. Dupius, and J. A. Montgomery, J. Comput. Chem., 1993, 14, 347.CrossRefGoogle Scholar
  15. 15.
    J. J. P. Stewart, J. Comput. Chem., 1989, 10, 209.CrossRefGoogle Scholar
  16. 16.
    S. Hotchandani and A. C. Testa, J. Photochem. Photobiol. A: Chem., 1991, 55, 323.CrossRefGoogle Scholar
  17. 17.
    V. G. Avakyan, V. B. Nazarov, M. V. Alfimov, A. A. Bagatur’yants, and N. I. Voronezheva, Izv. Akad. Nauk. Ser. Khim., 2001, 199 [Russ. Chem. Bull., Int. Ed., 2001, 50, 206].Google Scholar
  18. 18.
    V. Yu. Rudyak, V. G. Avakyan, V. B. Nazarov, N. I. Voronezheva, and M. V. Alfimov, Russ. J. Phys. Chem., 2005, 79, Suppl. 1, 28.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2007

Authors and Affiliations

  • V. B. Nazarov
    • 1
  • V. G. Avakyan
    • 2
  • S. P. Gromov
    • 2
  • M. V. Fomina
    • 2
  • T. G. Vershinnikova
    • 1
  • V. Yu. Rudyak
    • 2
  • M. V. Alfimov
    • 2
  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of SciencesChernogolovka, Moscow RegionRussian Federation
  2. 2.Photochemistry CenterRussian Academy of SciencesMoscowRussian Federation

Personalised recommendations