Russian Chemical Bulletin

, Volume 55, Issue 11, pp 2109–2113 | Cite as

Nickel-catalyzed addition of benzenethiol to alkynes: Formation of carbon-sulfur and carbon-carbon bonds

  • V. P. Ananikov
  • S. S. Zalesskiy
  • N. V. Orlov
  • I. P. Beletskaya


Nickel-catalyzed addition of benzenethiol to alkynes leads to alkenyl and dienyl sulfides; the direction of the process can be controlled by varying the PhSH/alkyne ratio. An advanced procedure, which ensures higher yields of 2-phenylsulfanylalkenes, includes gradual addition of alkyne to the other reactants. The structures of conjugated dienyl sulfides formed in the reaction were determined by 2D NMR spectroscopy.

Key words

nickel complexes transition metal catalysis alkynes alkenyl sulfides dienyl sulfides green chemistry 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. P. Ananikov, N. V. Orlov, and I. P. Beletskaya, Organometallics, 2006, 25, 1970.CrossRefGoogle Scholar
  2. 2.
    A. Kondoh, K. Takami, H. Yorimitsu, and K. Oshima, J. Org. Chem., 2005, 70, 6468.CrossRefGoogle Scholar
  3. 3.
    B. A. Trofimov, Curr. Org. Chem., 2002, 6, 1121.CrossRefGoogle Scholar
  4. 4.
    T. G. Back and M. V. Krishna, J. Org. Chem., 1988, 53, 2533.CrossRefGoogle Scholar
  5. 5.
    W. E. Truce and G. J. W. Tichenor, J. Org. Chem., 1972, 37, 2391.CrossRefGoogle Scholar
  6. 6.
    V. P. Ananikov, D. A. Malyshev, I. P. Beletskaya, G. G. Aleksandrov, and I. L. Eremenko, Adv. Synth. Catal., 2005, 347, 1993.CrossRefGoogle Scholar
  7. 7.
    A. Ogawa, T. Ikeda, K. Kimura, and T. Hirao, J. Am. Chem. Soc., 1999, 121, 5108.CrossRefGoogle Scholar
  8. 8.
    H. Kuniyasu, A. Ogawa, K. Sato, I. Ryu, N. Kambe, and N. Sonoda, J. Am. Chem. Soc., 1992, 114, 5902.CrossRefGoogle Scholar
  9. 9.
    A. Ogawa, J. Organomet. Chem., 2000, 611, 463.CrossRefGoogle Scholar
  10. 10.
    M. Beller, J. Seayad, A. Tillack, and H. Jiao, Angew. Chem., Int. Ed., 2004, 43, 3368.CrossRefGoogle Scholar
  11. 11.
    F. Alonso, I. P. Beletskaya, and M. Yus, Chem. Rev., 2004, 104, 3079.CrossRefGoogle Scholar
  12. 12.
    P. Bicev, A. Furlani, and G. Sartori, Gazz. Chim. Ital., 1973, 103, 849.Google Scholar
  13. 13.
    P. Chini, A. Santambrogio, and N. Palladino, J. Chem. Soc. (C), 1967, 830.Google Scholar
  14. 14.
    W. Hartmann, K. D. Preuss, and H. Singer, J. Organomet. Chem., 1983, 258, 235.CrossRefGoogle Scholar
  15. 15.
    J. Tsuji, Transition Metal Reagents and Catalysts: Innovations in Organic Synthesis, Wiley and Sons, Chichester, 2002.Google Scholar
  16. 16.
    G. A. Chukhadzhyan, E. L. Sarkisyan, and T. S. Elbakyan, Zh. Org. Khim., 1972, 8, 2004 [J. Org. Chem. USSR, 1972, 8 (Engl. Transl.), 2020].Google Scholar
  17. 17.
    L. A. Akopyan, S. G. Grigoryan, G. A. Chukhadzhyan, and S. G. Matsoyan, Zh. Org. Khim., 1973, 9, 2004 [J. Org. Chem. USSR, 1973, 9 (Engl. Transl.)].Google Scholar
  18. 18.
    G. Giacomelli, F. Marcacci, A. M. Caporusso, and L. Lardicci, Tetrahedron Lett., 1979, 20, 3217.CrossRefGoogle Scholar
  19. 19.
    V. P. Ananikov, M. A. Kabeshov, I. P. Beletskaya, G. G. Aleksandrov, and I. L. Eremenko, J. Organomet. Chem., 2003, 687, 451.CrossRefGoogle Scholar
  20. 20.
    D. S. Pedersen and C. Rosenbohm, Synthesis, 2001, 2431.Google Scholar
  21. 21.
    B. M. Trost, M. T. Sorum, C. Chan, A. E. Harms, and G. Ruhter, J. Am. Chem. Soc., 1997, 119, 698.CrossRefGoogle Scholar
  22. 22.
    V. Fiandanese, G. Marchese, F. Naso, and L. Ronzini, Synthesis, 1987, 1034.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • V. P. Ananikov
    • 1
  • S. S. Zalesskiy
    • 1
  • N. V. Orlov
    • 1
  • I. P. Beletskaya
    • 2
  1. 1.N. D. Zelinsky Institute of Organic Chemistry of the Russian Academy of SciencesMoscowRussian Federation
  2. 2.M. V. Lomonosov Moscow State UniversityMoscowRussian Federation

Personalised recommendations