Russian Chemical Bulletin

, Volume 55, Issue 11, pp 1956–1965

Use of the macrocyclic ligand cucurbit[6]uril for isolation of tetranuclear lanthanide aquahydroxo-carboxylate complexes from aqueous solutions

  • E. A. Mainicheva
  • O. A. Gerasko
  • L. A. Sheludyakova
  • D. Yu. Naumov
  • I. I. Karsanova
  • R. R. Amirov
  • V. P. Fedin


The tetranuclear lanthanide complexes {[Ln43-OH)42-OH)2(C5NH4COO)2 (H2O)4-(C36H36N24O12)2][Ln(H2O)8]1.5[Ln(H2O)6(NO3)2]0.5} (NO3)9·nH2O (Ln = Ho, Gd, or Er) were prepared by heating (130 °C) aqueous solutions of lanthanide nitrates, cucurbit[6]uril (C36H36N24O12), and 4-cyanopyridine. The tetradentate coordination of the macrocyclic cucurbit[6]uril ligands through the portals leads to the formation of sandwich compounds, in which the tetranuclear hydroxo complex is located between two macrocyclic molecules. The polynuclear complexes are additionally stabilized by the chelating effect of the isonicotinate ligands generated by hydrolysis of 4-cyanopyridine. In the complexes, the aromatic moiety of the isonicotinate ion is encapsulated into the hydrophobic inner cavity of cucurbit[6]uril. In the absence of cucurbit[6]uril, the reaction with 4-cyanopyridine produces only the polymeric complexes [Nd(C5NH4COO)3(H2O)2] and [Ln(C5NH4COO)2(H2O)4]NO3 (Ln = Pr, Sm, or Gd), whose structures were established by X-ray diffraction. In water and aqueous solutions of nonionic and cationic surfactants, irreversible changes of the tetranuclear fragment of the complex (Ln = Gd) were observed after storage for two days, whereas the anionic surfactant stabilizes the complexes.

Key words

lanthanides aqua complexes cucurbit[6]uril crystal structure 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    N. Sabbatini, M. Guardigli, and J.-M. Lehn, Coord. Chem. Rev., 1993, 123, 201.CrossRefGoogle Scholar
  2. 2.
    J.-C. G. Bunzli and G. R. Choppin, Lanthanide Probes in Life, Chemical and Earth Science, Elsevier, Amsterdam, 1989.Google Scholar
  3. 3.
    J.-C. G. Bunzli, Acc. Chem. Res., 2006, 39, 53.CrossRefGoogle Scholar
  4. 4.
    O. Guillou and C. Daiguebonne, in Handbook on the Physics and Chemistry of Rare Earths; Eds K. A. Gschneidner, J.-C. G. Bunzli, and V. K. Pecharsky, Elsevier, Amsterdam, 2004, 34, 221.Google Scholar
  5. 5.
    R. Anwander, Angew. Chem., Int. Ed., 1998, 37, 599.CrossRefGoogle Scholar
  6. 6.
    R. Wang, Z. Zheng, T. Jin, and R. J. Staples, Angew. Chem., Int. Ed., 1999, 38, 1813.CrossRefGoogle Scholar
  7. 7.
    Z. Zheng, Chem. Commun, 2001, 2521.Google Scholar
  8. 8.
    J.-C. G. Bunzli and C. Piguet, Chem. Rev., 2002, 102, 1897.CrossRefGoogle Scholar
  9. 9.
    G. Xu, Z. M. Wang, Z. He, Z. Lu, C. S. Liao, and C. H. Yan, Inorg. Chem, 2002, 41, 6802.CrossRefGoogle Scholar
  10. 10.
    N. Mahe, O. Guillou, C. Daiguebonne, Y. Gerault, A. Caneschi, C. Sangregorio, J. Y. Chane-Ching, P. E. Car, and T. Roisnel, Inorg. Chem., 2005, 44, 7743.CrossRefGoogle Scholar
  11. 11.
    L. G. Hubert-Pfalzgraf, New J. Chem., 1995, 19, 727.Google Scholar
  12. 12.
    P. Chanaud, A. Julbe, P. Vaija, M. Persin, and L. Cot, J. Mater. Sci., 1994, 29, 4244.CrossRefGoogle Scholar
  13. 13.
    N. H. Williams, B. Takasaki, M. Wall, and J. Chin, Acc. Chem. Res., 1999, 32, 485.CrossRefGoogle Scholar
  14. 14.
    K. G. Ragunathan and H.-J. Schneider, Angew. Chem., Int. Ed. Engl., 1996, 35, 1219.CrossRefGoogle Scholar
  15. 15.
    D. Parker and J. A. G. Williams, J. Chem. Soc., Dalton Trans., 1996, 3613.Google Scholar
  16. 16.
    P. Caravan, J. J. Ellison, T. J. McMurry, and R. B. Lauffer, Chem. Rev., 1999, 99, 2293.CrossRefGoogle Scholar
  17. 17.
    D. T. Richens, The Chemistry of Aqua Ions, John Wiley and Sons, Oxford, 1997.Google Scholar
  18. 18.
    B. Q. Ma, D. S. Zhang, S. Gao, T. Z. Jin, C. H. Yan, and G. X. Xu, Angew. Chem., Int. Ed., 2000, 39, 3644.CrossRefGoogle Scholar
  19. 19.
    B. Q. Ma, D. S. Zhang, S. Gao, T. Z. Jin, C. H. Yan, and G. X. Xu, New J. Chem., 2000, 24, 251.CrossRefGoogle Scholar
  20. 20.
    R. Wang, H. Lui, M. D. Carducci, T. Jin, C. Zheng, and Z. Zheng, Inorg. Chem., 2001, 40, 2743.CrossRefGoogle Scholar
  21. 21.
    R. Wang, H. D. Selby, H. Lui, M. D. Carducci, T. Jin, Z. Zheng, J. W. Anthis, and R. J. Staples, Inorg. Chem., 2002, 41, 278.CrossRefGoogle Scholar
  22. 22.
    D. S. Zhang, B. Q. Ma, T. Z. Jin, S. Gao, C. H. Yan, and T. C. Mak, New J. Chem., 2000, 24, 61.CrossRefGoogle Scholar
  23. 23.
    R. Wang, M. D. Carducci, and Z. Zheng, Inorg. Chem., 2000, 39, 1836.CrossRefGoogle Scholar
  24. 24.
    Z. Zak, P. Unfried, and G. Giester, J. Alloys Comp., 1994, 205, 235.CrossRefGoogle Scholar
  25. 25.
    G. Giester, P. Unfried, and Z. Zak, J. Alloys Comp., 1997, 257, 175.CrossRefGoogle Scholar
  26. 26.
    A. Day, A. P. Arnold, R. J. Blanch, and B. Snushall, J. Org. Chem., 2001, 66, 8094.CrossRefGoogle Scholar
  27. 27.
    W. A. Freeman, Acta Crystallogr., 1984, 40B, 382.Google Scholar
  28. 28.
    J. W. Lee, S. Samal, N. Selvapalam, H.-J. Kim, and K. Kim, Acc. Chem. Res., 2003, 36, 621.CrossRefGoogle Scholar
  29. 29.
    J. Lagona, P. Mukhopadhyay, S. Chakrabarti, and L. Isaacs, Angew. Chem., Int. Ed., 2005, 44, 4844.CrossRefGoogle Scholar
  30. 30.
    O. A. Gerasko, D. G. Samsonenko, and V. P. Fedin, Usp. Khim., 2002, 71, 840 [Russ. Chem. Rev., 2002, 71, 741 (Engl. Transl.)].Google Scholar
  31. 31.
    O. A. Gerasko, M. N. Sokolov, and V. P. Fedin, Pure Appl. Chem., 2004, 76, 1633.Google Scholar
  32. 32.
    O. A. Gerasko, E. A. Mainicheva, D. Yu. Naumov, N. V. Kuratieva, M. N. Sokolov, and V. P. Fedin, Inorg. Chem., 2005, 44, 4133.CrossRefGoogle Scholar
  33. 33.
    E. A. Mainicheva, O. A. Gerasko, L. A. Sheludyakova, D. Yu. Naumov, M. I. Naumova, and V. P. Fedin, Izv. Akad. Nauk, Ser. Khim., 2006, 261 [Russ. Chem. Bull., Int. Ed., 2006, 55, 267].Google Scholar
  34. 34.
    D. G. Samsonenko, J. Lipkowski, O. A. Gerasko, A. V. Virovets, M. N. Sokolov, V. P. Fedin, J. Platas, R. Hernandez-Molina, and A. Mederos, Eur. J. Inorg. Chem., 2002, 9, 2380.CrossRefGoogle Scholar
  35. 35.
    A. A. Tripol’skaya, E. A. Mainicheva, T. V. Mit’kina, O. A. Gerasko, D. Yu. Naumov, and V. P. Fedin, Koord. Khim., 2005, 31, 827 [Russ. J. Coord. Chem., 2005, 31, 827 (Engl. Transl.)].Google Scholar
  36. 36.
    D. G. Samsonenko, M. N. Sokolov, O. A. Gerasko, A. V. Virovets, Ya. Lipkovski, D. Fenske, and V. P. Fedin, Izv. Akad. Nauk, Ser. Khim., 2003, 2020 [Russ. Chem. Bull., Int. Ed., 2003, 52, 2132].Google Scholar
  37. 37.
    D. G. Samsonenko, O. A. Gerasko, Ya. Lipkovski, A. V. Virovets, and V. P. Fedin, Izv. Akad. Nauk, Ser. Khim., 2002, 51, 1763 [Russ. Chem. Bull., Int. Ed., 2002, 51, 1915].Google Scholar
  38. 38.
    D. G. Samsonenko, A. V. Virovets, Ya. Lipkovski, O. A. Gerasko, and V. P. Fedin, Zh. Strukt. Khim., 2002, 43, 715 [Russ. J. Struct. Chem., 2002, 43, 664 (Engl. Transl.)].Google Scholar
  39. 39.
    E. A. Mainicheva, A. A. Tripol’skaya, O. A. Gerasko, D. Yu. Naumov, and V. P. Fedin, Izv. Akad. Nauk, Ser. Khim., 2006, 1511 [Russ. Chem. Bull., Int. Ed., 2006, 55, No. 9].Google Scholar
  40. 40.
    V. Kiritis, A. Michaelides, S. Skoulika, S. Golhen, and L. Ouahab, Inorg. Chem., 1998, 37, 3407.CrossRefGoogle Scholar
  41. 41.
    T. Shao and H.-T. Zhang, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2003, 59, m353.CrossRefGoogle Scholar
  42. 42.
    B. Yan and Q. Y. Xie, J. Mol. Struct., 2004, 73, 688.Google Scholar
  43. 43.
    X.-R. Zeng, Y. Xu, R.-G. Xiong, L.-J. Zhang, and X.-Z. You, Acta Crystallogr., Sect. C: Cryst. Struct. Commun., 2000, 56, e325.CrossRefGoogle Scholar
  44. 44.
    L.-Z. Cai, M.-S. Wang, G.-W. Zhou, G.-C. Guo, J.-G. Mao, and J.-S. Huang, Acta Crystallogr., Sect. E: Struct. Rep. Online, 2003, 59, m249.CrossRefGoogle Scholar
  45. 45.
    L. A. Aslanov, I. D. Kiekbaev, I. K. Abdul’minev, and M. A. Porai-Koshits, Kristallografiya, 1974, 19, 170 [Sov. Phys.-Crystallogr., 1974, 19 (Engl. Transl.)].].Google Scholar
  46. 46.
    V. T. Panyushkin, Yu. A. Afanas’ev, E. I. Khanaev, A. D. Garnovskii, and O. A. Osipov, Lantanoidy. Prostye i kompleksnye soedineniya [Lantanides. Simple and Complex Compounds], Izd-vo Rostovskogo universiteta, Rostov-on-Don, 1980, p. 264 (in Russian).Google Scholar
  47. 47.
    A. A. Vashman and I. S. Pronin, Yadernaya magnitnaya relaksatsionnaya spektroskopiya [Nuclear Magnetic Relaxation Spectroscopy], Energoatomizdat, Moscow, 1986, p. 231 (in Russian).Google Scholar
  48. 48.
    A. A. Popel’, Magnitno-relaksatsionnyi metod analiza neorganicheskikh veshchestv [Magnetic Relaxation Analysis of Inogranic Compounds], Khimiya, Moscow, 1978, p. 224 (in Russian).Google Scholar
  49. 49.
    R. R. Amirov, Soedineniya metallov kak magnitno-relaksatsionnye zondy dlya vysokoorganizovannykh sred: primenenie v MR-tomografii i khimii rastvorov [Metal Compounds as Magnetic Relaxation Probes for Highly Organized Media: Application of MR Tomography and Solution Chemistry], Novoe znanie, Kazan, 2005, p. 316 (in Russian).Google Scholar
  50. 50.
    APEX2 (Version 1.08), SAINT (Version 7.03), SADABS (Version 2.11), and SHELXTL (Version 6.12). Bruker Advanced X-ray Solutions, Bruker AXS Inc., Madison, Wisconsin, USA, 2004.Google Scholar

Copyright information

© Springer Science+Business Media, Inc. 2006

Authors and Affiliations

  • E. A. Mainicheva
    • 1
  • O. A. Gerasko
    • 1
  • L. A. Sheludyakova
    • 1
  • D. Yu. Naumov
    • 1
  • I. I. Karsanova
    • 2
  • R. R. Amirov
    • 2
  • V. P. Fedin
    • 1
  1. 1.A. V. Nikolaev Institute of Inorganic ChemistrySiberian Branch of the Russian Academy of SciencesNovosibirskRussian Federation
  2. 2.A. M. Butlerov Chemical InstituteKazan State UniversityKazanRussian Federation

Personalised recommendations